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Introduction
Modern medical imaging, enhanced by advancements in computer vision, 
is transforming our ability to extract detailed data from each scan. Analysing 
complex structures like the airway tree has historically been limited by labour-in-
tensive measurement processes. However, the emergence of advanced 
computer vision methods facilitates large-scale analysis of numerous scans. 
This advancement in technology has led to significant insights from scans 
of the lungs into the pathophysiology of respiratory diseases. Nonetheless, 
defining what constitute “normal” airway measurements has remained chal-
lenging due to the lack of large-scale population-based cohorts. In this thesis, 
we apply state-of-the-art imaging analysis techniques to establish normal 
distributions of bronchial values in the general population, and we explore 
how these parameters correlate with smoking habits and respiratory illnesses.

Background

Respiratory System

The primary function of the respiratory system is the exchange of gases 
between the atmosphere and the circulatory system. This process involves 
oxygenating the blood and eliminating waste carbon dioxide, by way of the 
lungs.1 The respiratory system can be categorised into the upper and lower 
respiratory systems. Air is brought into the lungs via the respiratory tract which 
is split into upper and lower sections.

The upper respiratory tract consists of the nose, mouth, and pharynx, while 
the lower respiratory tract begins at the larynx and continues as the trachea 
and main bronchi to the terminal bronchioles and alveoli. The airways have a 
tree-like structure with about 25 divisions from trachea to alveoli. Each division 
is distinguished by the size and composition of the airway.2 The first 7 divisions 
are termed bronchi and are composed of cartilage, smooth muscle, and a 
lining of epithelial cells interspersed with mucous-producing goblet cells and 
endocrine cells. The divisions thereafter are termed bronchioles, distinct from 
bronchi by the lack of cartilage, a progressively thinner muscular layer and 
a single-layer epithelium of ciliated (hair-like) cells with scattered additional 
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cells that produce surfactant and mucous. Branches less than 2mm in diam-
eter are often called “small airways”.3

The lower respiratory system contains a juxtaposed vascular system that 
follows the airways to the alveoli, including pulmonary arteries bringing de-ox-
ygenated blood from the heart to the gas-exchange surfaces of the alveoli, 
and the pulmonary veins delivering oxygenated blood back to the heart. 
Both airways and vessels are supported by the interstitium, which is tissue 
providing structure and elasticity to the lungs. The combination of terminal 
airways, vessels, alveoli and interstitium is often referred to as the lung paren-
chyma.

The lungs expose a vast surface area of between 40-80m² to the environment 
for gas exchange. This surface is thus also exposed to toxic gases, smoke 
particles, and infective agents, which can damage the lungs. Damage can 
build up over time and cause fundamental changes to the composition and 
structure of the airways and the parenchyma, for example thickening of the 
airway walls, mucous hypersecretion, and destruction of the alveoli (Figure 
1.1 & Figure 1.2). This damage and resulting changes can lead to respira-
tory disease. When these changes become prominent enough, they can be 
visualised using medical imaging and eventually cause symptoms.

Imaging of Airways

Radiological imaging of the airways is possible through a variety of means. 
While magnetic resonance imaging (MRI) is advancing, its application mainly 
encompasses functional assessments rather than detailed anatomical eval-
uations of the bronchi, due to MRI’s limitations with regard to visualization 
of lung parenchyma and breathing motion artifacts.4,5 Currently, computed 
tomography (CT) is the main technique used for visualizing and measuring 
airways. CT comprises a series of cross-sectional “slices”, with 200-600 slices 
together forming a typical volume for a scan of the thorax. Each slice is 
made by reconstructing the detected attenuation of multiple x-ray beams 
from different angles around the subject. As CT uses ionising radiation, which 
is potentially damaging to cells, it is clinically important to aim for the lowest 
doses of x-ray that provide adequate image quality for a target purpose, 
such as clinical diagnostic imaging, lung-cancer screening, or interventional 
procedures. The dose correlates directly with the quality of the resulting image 
with higher doses providing clearer images with less noise. In a screening 
setting, low-dose CT has been shown to be useful for lung nodule detection; 
however, airway segmentation on low-dose CT poses challenges due to the 

lower quality of the image.

Segmenting and measuring the airways can be difficult and time-consuming.6 
At maximum inspiration the lungs consist of 80-90% air, resulting in a low-in-
tensity structure without clear delineations between the smallest branches 
and the adjacent air-spaces due to resolution limitations and partial volume 
effects.7

Figure 1.1 – Structure of a healthy and unhealthy airway of the lower respiratory 
tract. The healthy airway (top) has a densely coupled ciliated epithelium with a few 
mucous-secreting goblet and other supporting cells. The smooth muscle layer and 
supporting extracellular matrix are of normal thickness. The unhealthy airway (bottom) 
has a reduction of ciliated epithelial cells, which can be replaced with abnormal 
epithelial cells. Goblet cells and mucous hypersecretion proliferate, and the smooth 
muscle layer alongside the extracellular matrix is hypertrophied and thickened.

While many solutions are being investigated for lumen segmentation, accu-
rate wall segmentation remains an underexplored area. The size of the airways 
becomes smaller as we move from the central to peripheral branches and 
eventually approaches a size like the spatial resolution of the scan, making 
it increasingly difficult to visualize and measure smaller airway structures. 
This step is difficult but important to accurately understand the health of 
the airway wall, particularly in populations presumed healthy, where subtle 
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abnormalities can signal early disease.

Many automated techniques for airway lumen segmentation have been 
emerging with the rise of efficient deep-learning systems.8 However, they rely 
on the availability of high-quality training datasets with extensive and accu-
rate airway segmentations, which are costly and time intensive to obtain.9

Figure 1.2 - Coloured scanning electron micrograph of bronchial mucosa of a smoker. 
Many of the epithelial cells have had their hair-like cilia (blue) destroyed by smoke.

The main advantage of deep-learning approaches is that they can learn 
the image features that distinguish the lumen of an airway from the rest of 
the lung, which enables automatic segmentation of airways. This allows the 
deep-learning models to be trained on a specific dataset to provide good, 
automated, results tailored to that dataset. Once the lumen of the airway is 

segmented, the outer wall can be measured using a variety of means such 
as manually tracing the outlines, full-width half-max (Figure 1.3A), graph-cut 
(Figure 1.3B), and intensity-integration (Figure 1.3C), typically done using a 
cross-section of the airway perpendicular to its centreline (Figure 1.3D).10–12

Airway tree segmentation from CT images is useful to assess lung diseases 
that are characterized by structural changes of the airway tree. The meas-
urements of the lumen and wall of an airway can be used to quantify the 
burden of disease, and if tracked over time, to monitor response to disease 
treatment.13,14 Directly measuring the airways can provide novel information 
about the pathophysiology of earlier stages of disease, in contrast to other 
diagnostic techniques such as spirometry, which measures consequences of 
disease such as airflow limitation. The measurements from an airway tree can 
be summarised in a variety of ways with focus on different bronchial param-
eters such as wall thickening or loss of branches.

Bronchial Parameters

Bronchial parameters are measurements of the airway tree that are taken 
at a specific location or summarised over a set of branches. Most bron-
chial parameters quantify the size of the airway lumen and wall. The airway 
changes due to pathology can thus be reflected in a changing bronchial 
parameter value.

Calculating bronchial parameters requires measuring the lumen and wall. 
Initial research into bronchial parameters was performed with predominantly 
manual measurements on axial CT slices at recognisable locations in the 
airway tree, such as RB1 (Figure 1.4).15,16 More recently due to improvements 
in automated airway segmentation methods, measurements from multiple 
airways can be averaged by  generation and location. 

The most studied bronchial parameters are calculated from the measure-
ments of the lumen radius (LR) and the radius of the total airway (TR). These 
are visualised in Figure 1.5A. The formulae to calculate commonly used bron-
chial parameters are:

1)	 Luminal area: LA = π * LR²
2)	 Wall Thickness: WT = TR - LR
3)	 Wall Area Percent: WAP=(TA-LA)/TA*100,where TA=π(TR)^2 

Another commonly reported bronchial parameter is the summary param-
eter Pi10, which stands for the square root of the wall area for a hypothet-
ical airway with an internal perimeter of 10mm. It is obtained by calculating 
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the linear regression of the square root of the wall area against the internal 
perimeters of all or of a subset of branches from the airway tree, and finding 
the regression line intercept at an internal perimeter of 10mm (Figure 1.5B).17

Figure 1.3 – Examples of algorithms used for measuring airway walls. A) The Full-Width 
Half-Maximum approach measures intensity of voxels along a path that begins at 
the lumen centre and radiates out across the airway wall. The airway width is deter-
mined by measuring the distance between the points where the intensity is half of 
the maximum on both sides of the highest intensity point. B) The graph-cut approach 
represents the 2D image patch perpendicular to the airway centreline as a graph 
model. This model is then divided at the lumen-wall boundary and measurements 
of the lumen and wall are obtained by measuring the resulting segmentations. This 
approach can also be extended to the whole 3D image. C) Intensity-integration 
approach segments the airway wall using a thresholding technique followed by direct 
measurement of resulting segmentation. D) Multiplanar reconstruction approach 
involves reformatting the volumetric scan along the centreline of the airway to repre-
sent it as a straight branch. Measurements of airways are perpendicular to the centre-
line (highlighted in yellow).

Figure 1.4 - Airway tree segmentation with anatomical labels for segmental branches. 
RB – light branch, LB – left branch.

Recently, the availability of high-quality 3D segmentations enabled the 
investigation of novel bronchial parameters, which aim to summarise the 
complexity and geometry of the airway tree. These parameters count the 
total number of airways, the rate at which the lumen tapers or the fractal 
dimension of the airway tree. Recent results from CT measurements illustrate 
parallels to results from micro-CT and histology, where a reduced airway 
segmentation complexity and airway count were seen in participants with 
disease.18–20

While spirometry is well-established in defining disease, emerging studies 
suggest a potential predictive relationship between bronchial parameters 
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and disease development and treatment response in asthma patients.21–24 
They may also have applications in exploring chronic obstructive pulmonary 
disease (COPD) phenotypes, and highlight differences in disease trajectories 
for men and women.25–28 However, there are still gaps in our understanding of 
the influence of characteristics as age, height, weight and sex on bronchial 
parameters in the absence of disease.

Figure 1.5 - A) Simplified diagram of an airway cross-section perpendicular to the 
airway centreline. The total radius (TR, blue dashed line) and lumen radius (LR, yellow 
dashed line) are used to calculate bronchial parameters for an individual airway 
such as lumen area and wall thickness. B) Example of a Pi10 calculation based on 
multiple airway measurements from the same individual. The square root of the wall 
area is plotted against the internal perimeter for each airway and a linear regression 
performed. The square root of the wall area where the internal perimeter is 10mm is 
then identified and used as the summary bronchial parameter Pi10.

Bronchial Parameters in the General Population

Advances in medical imaging have facilitated early detection of diseases 
through techniques such as low-dose thoracic CT scanning. These develop-
ments offer improved sensitivity with lower-dose imaging, enhanced noise-re-
moval algorithms, and automated methods for quantifying biomarkers. As a 
result, population-based screening programs are being implemented across 
the world, with a particular focus on lung cancer screening utilizing low-dose 
chest CT scans.29–31

CT scans provide quantitative data that can contribute to the development 
of measurable biomarkers. Moreover, they enable the measurement of both 
the airway tree and parenchyma within the lungs. Consequently, incorpo-
rating assessment of bronchial parameters into lung cancer screening proto-
cols becomes feasible and holds promise for broader applications in popu-

lation health.32–34

The significance of providing bronchial parameters lies in their relevance 
alongside emphysema evaluation to population screening efforts due to the 
substantial burden imposed by COPD on global populations. COPD ranks 
among the top ten causes of death worldwide.35 To tackle this public health 
challenge effectively, a comprehensive approach is needed. This includes 
secondary prevention through early detection of disease and tertiary preven-
tion by monitoring established disease and response to treatment. However, 
this requires establishing reference values for bronchial parameters. These 
benchmark values will aid comparing a screened individual’s measurements 
against those of the general population and identifying deviations from 
normal ranges. To fully realize its potential, there is a need to address knowl-
edge gaps regarding the measures of bronchial parameters in the general 
population.
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Aim of Thesis

Automated Bronchial Parameter Calculation

The first goal of this thesis is to develop an efficient automated method for 
extracting and summarizing bronchial parameters in the general population. 
This challenging task is akin to counting and measuring the branches and 
bark of a tree without direct access to that tree. It has only become achiev-
able with recent advancements in artificial intelligence and computing 
technology, particularly graphics processing unit enabled deep learning. 
The first step of this research is to integrate a novel airway tree segmentation 
AI method and a high-quality wall segmentation method to create a fully 
automatic pipeline for accurate measurement of airways.

Reference Bronchial Parameters in the General Population

The field of CT-derived bronchial parameter research has been focused on 
the “unhealthy” airway, whether it is due to COPD, asthma, or other disease. 
On the other hand, it is crucial to understand how such parameters measure 
in the wider population, particularly in lung-healthy populations, to be able 
to use this research in efficient population health screening efforts, particu-
larly in addressing COPD and early diagnosis. By understanding the range for 
normal measurements, we can gain deeper insights into pathological airway 
changes. Because of this rationale, in the second part of this thesis we focus 
on establishing reference bronchial parameters in the general population.

Thesis Outline

Chapter 2 reviews current methods for obtaining bronchial wall parameters 
and compares them across different populations. It focuses particularly on 
populations of COPD and asthma patients, smoking individuals, and never 
smokers. This chapter also discusses the challenges that stem from the variety 
of measurement methods in bronchial parameter research.

Chapter 3 describes our approach for an efficient generation of accurate 
airway segmentations. This approach involves manual correction of initial 
airway segmentations obtained from a pre-trained deep-learning model 
architecture specialised for segmentation from volumetric CT images (U-Net). 

Chapter 4 builds on our work to automate bronchial parameter calculation. 
We introduce and validate an automated pipeline for segmenting the lumen 
and wall surfaces of the bronchial tree. The pipeline combines a U-Net for 
airway extraction and an optimal-surface graph-cut method to segment the 
lumen and the wall surrounding the extracted airways.

Chapter 5 establishes reference values for bronchial parameters within a 
large, healthy cohort. This cohort comprises a lung-healthy group of partici-
pants from the Imaging in Lifelines study. The bronchial parameters are auto-
matically obtained on low-dose chest CT scans using the approaches devel-
oped in Chapters 3-5.

Chapter 6 explores the relationship between the duration of smoking cessa-
tion and changes in bronchial parameters as measured by CT in a popula-
tion-based cohort. This cohort encompasses lung-healthy and lung-unhealthy 
former-smokers. We postulate that the longer the period since smoking cessa-
tion, the more likely it is that bronchial measurements will approach normal 
values. 

Chapter 7 investigates Total Airway Count (TAC) and its variability influenced 
by factors such as age, sex, height, weight, and smoking habits. Additionally, 
it assesses how TAC relates to variations in spirometry results and evaluates 
its effectiveness in predicting the spirometry-based categorization of partic-
ipants. 

Chapter 8 explores the measurements of lung lobe volumes in the general 
population and works on establishing reference equations for lung-healthy 
individuals based on sex, age, and height.

Chapter 9 presents a general discussion of the main findings achieved within 
the research presented in this thesis, alongside future directions for research.
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Objective Research on computed tomography (CT) bronchial parameter 
measurements shows that there are conflicting results on the values for 
bronchial parameters in the never-smoking, smoking, asthma, and chronic 
obstructive pulmonary disease (COPD) populations. This review assesses 
the current CT methods for obtaining bronchial wall parameters and their 
comparison between populations.

Methods A systematic review of MEDLINE and Embase was conducted 
following PRISMA guidelines (last search date 25th October 2021). Method-
ology data was collected and summarised. Values of Percentage Wall Area 
(WA%), Wall Thickness (WT), summary airway measure (Pi10) and Luminal 
Area (Ai) were pooled and compared between populations.

Results 169 articles were included for methodologic review; 66 of these were 
included for meta-analysis. Most measurements were obtained from multi-
planar reconstructions of segmented airways (93 of 169 articles), using various 
tools and algorithms; Third generation airways in the upper and lower lobes 
were most frequently studied. COPD (12,746) and smoking (15,092) popula-
tions were largest across studies and mostly consisted of men (median 64.4%, 
IQR 61.5%-66.1%). There were significant differences between populations; 
the largest WA% was found in COPD (mean SD 62.93±7.41%, n=6,045), the 
asthma population had the largest Pi10 (4.03±0.27mm, n=442). Ai normalised 
to Body Surface Area (Ai/BSA) (12.46±4mm², n=134) was largest in the never-
smoking population.

Conclusions Studies on CT-derived bronchial parameter measurements are 
heterogenous in methodology and population, resulting in challenges to 
compare outcomes between studies. Significant differences between popu-
lations exist for several parameters, most notably in the wall area percentage; 
however, there is a large overlap in their ranges.

Introduction

Smoking, chronic obstructive pulmonary disease (COPD), and asthma are 
some of the top non-infective pulmonary health burdens in developed coun-
tries36–38. Due to an aging population and global smoking rates among others, 
the number of adults affected with COPD is expected to rise in the future. 
Both asthma and COPD have a wide variety of phenotypes and presen-
tations, and all have in common the presence of airway inflammation and 
remodelling39,40.

Airway inflammation and remodelling can be measured on CT scans of the 
thorax. While progress in quantitative CT (QCT) has been made over the past 
couple of decades, there are many different parameters to evaluate airway 
disease41. Some recent advances have been made in the use of CT-derived 
bronchial parameters for monitoring disease trajectory, smoking cessation, 
genetic diversity, and treatment response42–47. These demonstrate the poten-
tial for quantification and characterisation of a diseased airway. 

Current research in this field describes conflicting results for bronchial param-
eters. Some existing articles describe no differences between groups like lung 
cancer patients versus healthy individuals, smoking COPD patients versus 
smoking, and asthma patients versus controls48–52, while others show significant 
differences between subgroups, such as COPD GOLD I-IV patients, that would 
enable further clinical applications like disease monitoring and identification 
of distinct groups within a population14,53–56. Additionally, some authors report 
that bronchial parameters vary by sex, age, and other characteristics27,57–59, 
whereas this is not observed by others60,61. To explore this, we conducted a 
systematic review of bronchial parameter values in never-smoking, smoking, 
COPD and asthma populations and compared the resulting pooled values 
between these populations.

Studies assessing bronchial parameters use a wide range of CT scanning 
protocols, reconstruction algorithms, and post-processing tools. This may 
have an impact on radiologic measurements. To enable the possibility of 
comparing novel research to past studies, we aimed to identify a most used 
reference technique for bronchial parameter measurement; thus, this review 
also summarises the current methodologies in use for determining bronchial 
parameters on CT scans in the never-smoking, smoking, COPD, and asthma 
populations. We identified previous general reviews on the subject of method-
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ology in bronchial parameter measurement [29], however to the best of our 
knowledge there are no previous systematic reviews of this subject involving 
review of the never-smoking population and pooling of never-smoking bron-
chial parameter data from multiple studies to enable comparison with other 
populations.

Methods

This study was conducted following Preferred Reporting Items for Systematic 
Reviews and Meta-analyses (PRISMA)62. The entirety of the screening process 
was performed using Covidence63.

Search Strategy

Medline and EMBASE were systematically searched. The last search date 
was 25/10/2021. The search strings encompassed the key words and index/
Mesh terms related to the Population: adult, smoking, never-smoking, COPD, 
asthma, the Intervention: computed tomography scan, and the Outcomes: 
bronchial wall measurements (e.g., wall measurement, lumen area, wall 
area etc.). The full search strings are provided in the supplemental material.

Inclusion/Exclusion Criteria

The following criteria were required for an article to be included: 1. Original 
empirical research. 2. Study population: adults ≥ 18 years old and a focus 
on at least one of four target populations encompassing common respira-
tory states: never-smoking or smoking population (without pulmonary disease 
based on spirometry and GOLD criteria and no history of other pulmonary 
disease such as pulmonary fibrosis), COPD population, or asthma population. 
3. Study includes inspiratory chest CT scan for bronchial measurements. 4. 
Research article must be: Peer-reviewed, English text available.

Exclusion criteria applied were: 1. Review article without new experimental 
data. 2. Outlier study population e.g., Coal Miners, World Trade Centre 
Firemen etc. 3. Article describing study on phantom/animal/histology spec-
imen only. 4. <50 participants in the study. 5. Non-Volumetric CT scan. A scan 
was considered non-volumetric if the slice increment exceeded slice thick-
ness and was >2 times larger than voxel size.

The results of the search were processed for eligibility in two steps. Titles and 
Abstracts were screened by one author for inclusion in full text screening. This 

was followed by two of three researchers (I.D., S.M., N.McV.) screening the 
full text for eligibility in the review. Consensus between the two researchers 
was necessary for inclusion; if consensus could not be reached the conflict 
was resolved by the third author. All researchers were blinded to decisions 
made by one another to reduce bias in the selection process.

Studies included in the methodological systematic review were excluded 
from the meta-analysis if they had insufficient data for pooling of bronchial 
parameters. 

Data Extraction

Methodologic and study data were collected when available. We focused 
on tools and methods used in measuring the bronchial walls. These were: 
reconstruction used for measurement, whether bronchial parameters were 
normalised to other measurements e.g., body surface area (BSA), the studied 
airway branches and generations, and the algorithms and software used for 
measurement (Figure S2.1). Following the exclusion of studies with insufficient 
data for pooling, for each population we pooled bronchial parameters that 
were present in two or more of the included studies. These were: 3rd genera-
tion airway Wall Area Percentage (WA%), Wall Thickness (WT), Luminal Area 
(Ai), Ai normalised to BSA (Ai/BSA), and Square Root of the Wall Area of a 
theoretical airway with an internal perimeter of 10mm (Pi10) (Figure S2.2). 
When multiple articles related to the same bronchial parameters/partici-
pants, those articles were grouped by their study name. Per study, data from 
the article with the largest cohort was used for analysis.

Articles that were eligible for inclusion in pooling of parameters were assessed 
for bias using a modified Cochrane Risk of Bias tool (RoB 2)64. In short, arti-
cles were evaluated for Low/High or Some Concerns bias in the domains 
of: Sequence Generation, Allocation Concealment, Incomplete Outcome 
Data, Selective Outcome Reporting and Other Sources of Bias. A judgement 
of “High” in any of those domains marks a study as high risk of bias. Irrespective 
of bias, the reported mean and standard deviation of a bronchial parameter 
was extracted and included in pooled analysis.

Statistical Analysis

Means and standard deviations from multiple studies were extracted and 
combined using the Cochrane formula for pooling groups65. The resulting 
pooled values were analysed using One-way ANOVA and Tukey-Kramer HSD 
Post-Hoc Test66. An additional meta-analysis of mean differences of COPD vs 
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controls (never-smokers or smokers) for 3rd generation WA% was performed 
using an inverse-variance with a random effects model, assuming heteroge-
neity67. To assess for publication bias, a funnel plot was graphed and Eggar’s 
test performed68. A P value of <0.05 was considered statistically significant.

Results

The search yielded 7,494 articles of which 2,719 were duplicates. Full-text 
screening was conducted on 375 articles resulting in 169 articles that were 
included for methodologic evaluation, a summary is provided in supple-
mental material Table S2.1. Of these, 66 were eligible for pooling of data, and 
for comparison of population groups (Figure 2.1). The most common source 
of bias was Low, with ”Some Concerns” in the “Other” category due to study 
participants consisting mostly of men (Figure 2.2). The details of bias assess-
ment are provided in the supplemental material Table S2.2.

Figure 2.1 - PRISMA Flowchart

Systematic Review - Population

We calculated the number of subjects in the four groups and per bron-
chial parameter measured (Figure 2.3). Among the reviewed studies, COPD 
and smoking populations had the largest number of participants: in WA% 
(n=11,839 COPD and 9,257 smoking) and Pi10 (n=12,746 COPD and 15,092 
smoking). Across all measured parameters apart from Di, never-smoking had 
the lowest numbers of participants. Most of the COPD and smoking partici-
pants were men (64.41% male [61.5%-66.1%] median [IQR]), while the asthma 
and never-smoking populations had more women than men (56.44% female 
[54.7%-58.6%]) (Table 2.1). 

Figure 2.2 - Risk of Bias summary for studies included in pooled-analysis (n=66)

Methodologic Review - Image Analysis Methods

We identified a wide range of methods used to obtain bronchial param-
eter measurements. 93 of the 169 articles obtained measurements from a 
reconstructed plane perpendicular to the centreline of the airway, 29/169 
articles measured airways cut in cross section on axial slices. 36/169 articles 
normalised one or more bronchial parameters to Body Surface Area (BSA) or 
square root of BSA (√BSA).
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WA% WA Pi10 Ai Di WT

COPD 11,839 (65.7) 

n=41

4,449 (64.9)

n=16

12,746 (67.2)

n=25

9,731 (62.3)

n=29

3,020 (69.1)

n=10

2,919 (75.3)

n=21

Asthma 1,856 (46.4)

n=27

1,463 (40.8)

n=18

1,604 (43.2)

n=9

2,634 (45.4)

n=28

712 (39.6)

n=6

1,722 (41.5)

n=20

Smoking 9,257 (59.5)

n=23

3,168 (60.8)

n=9

15,092 (64.4)

n=24

3,927 (64.5)

n=17

5,207 (61.57)

n=9

5,062 (61.3)

n=11

Never

Smoking

965 (44.9)

n=22

378 (43.9)

n=11

898 (40)

n=9

1,303 (49)

n=22

742 (45.3)

n=7

1,127 (41.7)

n=16

Table 2.1 - Total number of participants across all studies reporting Wall Area 
Percentage (WA%), Wall Area (WA), Square root of the wall area of hypothetical 
airway with internal perimeter of 10mm (Pi10), Luminal Area (Ai), Luminal Diameter 
(Di), and Wall Thickness (WT). Percentage of participants that are men provided in 
parentheses. n = number of studies.

To determine the airway lumen and wall outline, the Full-Width Half-Maximum 
(FWHM) algorithm was used in 48/169~ articles, and Graph-Cut segmentation 
was used in 49/169 articles. In 13/169 articles it was unclear which method 
was used. 43/169 articles used VIDA software, either based on the Apollo 
or Pulmonary Workstation. 28 articles used in-house software. The complete 
summary can be found in Table 2.2.

Methodologic Review - Studied Airways and Generations

Of the articles that specified which Boyden Classification69 airway branches 
were measured, Right Branch (RB)1 and RB10 were measured in 87/169~ 
and 66/169~ articles respectively, Left Branch (LB)1±2 and LB10 in 77/169~ 
and 42/169~ articles (Figure 2.4). Articles were not included when the airway 
generation was of a mathematical rather than anatomical distinction, i.e. 
according to Weibel’s “A” Model of the Lung2. Out of the included articles, 
the 3rd generation airway was measured in 100/169 articles. 65/169 studies 
did not provide information on the airway generations that were measured 
and 4/169 papers measured airways beyond 4th generation and onward.

Figure 2.3 - Number of articles investigating a bronchial parameter, with total number 
of participants per group and across studies indicated by bubble size.

Pooled Analysis - Measured Bronchial Parameters

Never-smoking populations had the smallest 3rd generation WA% (57.53±8.71% 
n=693) followed by smoking populations (61.2±6.43% n=3,228), and asthma 
populations (62.04±7.0% n=499), with COPD populations having the largest 
WA% (62.93±7% n=6,045) (Figure 2.5). One-way ANOVA analysis for WA% 
showed significant differences between all groups except for smoking versus 
asthma populations (p = 0.07, 95% CI [-0.05%, 1.7%]) (Table 2.3).

Figure 2.4 - Studied Airway Branches, grey colour indicates right lung, white colour 
indicates left lung. Number on x axis indicates branch. Y axis indicates number of arti-
cles that include a measure of the specified branch.

Pi10 pooled analysis indicates that never-smoking populations have a larger 
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Pi10 (3.81±0.7mm n=644) than smoking populations (3.23±0.83mm n=4,942) 
(p < 0.001, 95% CI [-0.5mm, -0.6mm]), but smaller than COPD populations 
(3.96±0.55mm n=6,887) (p < 0.001, 95% CI [0.1mm, 0.2mm]) (Figure 2.6) while 
asthma populations had the largest Pi10 (4.03±0.27 n=442)(p = < 0.001, 95%CI 
[0.1mm, 0.3mm]).

Third generation Ai normalised to BSA was largest in never-smoking populations 
(12.46±4mm² n=134), followed by asthma (10.09±3.21mm² n=336), smoking 
(9.89±3.96mm² n=108) and COPD populations (9.59±5.49mm² n=712). With 
non-normalised Ai, never-smoking had a smaller Ai (21.69±11.15mm² n=192) 
compared to smoking (24.09±12.8mm² n=2,358), and marginally larger than 
COPD (21.45±10.58mm² n=3,323) and asthma (19.45±6.77mm² n=161). WT 
pooled analysis revealed that never-smoking had the thickest 3rd generation 
walls (2.39±0.83mm n=460) compared to smoking (1.48±0.16 n=594), COPD 
(1.32±0.34 n=1,254) and asthma (1.36±0.4 n=163).

Airway Generations Analysed by Lobe Wall Algorithm Software Used

3 100 RUL 21 Graph-Cut 49 In-house 28

4 77 LUL 16 FWHM 48 Apollo VIDA 25

5 68 RLL 14 Int-Int 17 Pulmonary Workstation VIDA 18

6 44 LLL 11 Unclear 13 Airway Inspector 3D Slicer 10

7 22 RML 10 Manual 6 Other 41

8+ 17 Lingula 3 Other 8 Unclear 19

Table 2.2 - Summary of methodology, indicating the number of articles investigating 
airway generations or lobes, and the algorithms, methods and software used for bron-
chial parameter measurement. N=169 articles. Most studies analysed more than one 
airway generation. FWHM = Full-Width Half Maximum. Int-Int = Intensity Integration.

WA% [%] Smoking COPD Asthma Ai [mm2] Smoking COPD Asthma

Never-Smoking

[2.9, 4.5]

<0.001

[4.7, 6.1]

<0.001

[3.4, 5.6]

<0.001 Never-Smoking

[0.2, 4.6]

0.03

[-1.9, 2.4]

0.98

[-5.4, 0.9]

0.26

Smoking

[1.3, 2.1]

<0.001

[-0.05, 1.7]

0.07 Smoking

[-1.8, -3.4]

<0.001

[-2.2, -7]

<0.001

COPD

[-0.03, -1.7]

<0.05 COPD

[-4.4, 0.4]

0.13

Pi10 [mm] Smoking COPD Asthma Ai/BSA [mm2] Smoking COPD Asthma

Never-Smoking

[-0.5, -0.6]

<0.001

[0.1, 0.2]

<0.001

[0.1, 0.3]

<0.001 Never-Smoking

[0.9, 4.1]

<0.001

[-1.7, -4]

<0.001

[-1.1, -3.6]

<0.001

Smoking

[0.7, 0.8]

<0.001

[0.7, 0.8]

<0.001 Smoking

[-1.6, 0.9]

0.92

[-1.1, 1.5]

0.98

COPD

[-0.2, 0.02]

0.16 COPD

[-0.3, 1.3]

0.37

WT [mm] Smoking COPD Asthma

Never-Smoking

[-0.9, -1]

<0.001

[-1, -1.1]

<0.001

[-0.9-1.1]

<0.001

Smoking

[-0.1, -0.2]

<0.001

[-0.01, -0.2]

0.02

COPD

[-0.06, 0.1]

0.8

Table 2.3 - 95% Confidence Interval (in parentheses) and p Values of One-way ANOVA 
with Tukey HSD Post-Hoc test comparing the difference between pooled values per 
population for Wall Area Percentage (WA%), Luminal Area (Ai), Ai normalised to Body 
Surface Area (BSA), Square root of the wall area of a hypothetical airway with internal 
perimeter of 10mm (Pi10) and Wall Thickness (WT).
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Figure 2.5 - Pooled analysis of (a) Percentage Wall Area (WA%) of 3rd Generation 
Airways, (b) Square Root of the Wall Area of hypothetical airway of internal perimeter 
of 10mm (Pi10), (c) Luminal Area (Ai) normalised to Body Surface Area (BSA), (d) Wall 
Thickness (WT) of 3rd generation airways. Diamond location is the mean, size indicates 
relative number of included participants. Error-bars are standard deviation.

Meta-Analysis of 3rd Generation WA% for COPD vs Controls

16 studies were included in sub analysis of 3rd generation WA%, 6 with never-
smokers as controls and 10 with smokers as controls. Overall, 3rd generation 
WA% was 2.78% larger in COPD compared to controls, p=<0.001, 95% CI 
[1.85, 3.71] (Figure S2.3). Sub-analysis between COPD and never-smokers 
shows a difference of 2.59% larger WA% for COPD, 95% CI [1.14, 4.05] and 
between COPD and smokers WA% was 2.90% larger in COPD, 95% CI [1.71, 
4.09]. Egger’s test shows an intercept of 0.35 and p=0.712. The I2 ranged from 
70.65% to 79.97% in the subgroups, and overall 87.71%.

Discussion	
This systematic review aimed to explore the field of bronchial parameter 
research in different specified populations. The results show that the study 
of CT bronchial parameters is biased towards the COPD population’s larger 
airways. Exploration of airways in never-smokers is needed to solidify knowl-
edge on the differences in bronchial parameters due to participant char-
acteristics. Bronchial walls were most often measured using the full-width 
half-maximum or the graph-cut method on a plane perpendicular to the 
centreline of the airway, making full use of the utility of a volumetric CT scan. 
The 3rd generation right upper lobe apical segment branch was the most 
often measured bronchial parameter. From a subset of studies, we pooled 
and compared the reported bronchial parameter values for never-smoking, 
smoking, asthma, and COPD populations.

Figure 2.6 - Pooled analysis of square root of wall area of hypothetical airway with 
internal perimeter of 10mm (Pi10) in Never-Smoking (A) and Smoking (B) popula-
tions. Values are Mean ± SD with diamond size indicating relative number of included 
participants.
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Bronchial parameter research is heavily focused on the COPD and smoking 
populations. Low numbers of never-smoking participants limit our baseline 
knowledge of the normal lung parenchyma and bronchial walls as assessed 
on CT. Our review showed that articles reporting on never-smoking and 
asthma populations tended to normalise parameters, while articles inves-
tigating smoking and COPD did not. Normalisation seeks to control for 
patient characteristics that affect bronchial wall parameters. The majority 
of normalisation is performed with body surface area or square root of body 
surface area due to the similarity of units70. Alternative methods of normali-
sation, such as normalisation to tracheal parameters, have been examined 
but may require further research to assess robustness28,71,72. Inclusion of more 
never-smokers in studies may allow for clearer understanding of the inter-
play between bronchial parameters and participant characteristics such as 
sex, height, and age, without the confounding factors of smoking and other 
disease states.

One of the challenges in conducting research in the field of quantitative 
CT bronchial parameters is determining the optimal CT methodology for 
bronchial wall measurement. Scanner model and protocol significantly influ-
ence the measurements73,74, along with participant inspiration levels during 
the scan75,76. CT scanning is continually advancing, and much of the early 
research has been focused on individual slices where the airway is cut in cross 
section according to anatomical properties, e.g., the right upper lobe apical 
segment airway being almost perpendicular in the axial plane. However, 
volumetric scanning is increasingly more common and allows for segmenta-
tion of the airway tree, in turn allowing for more accurate measurement of 
the walls. Most articles using volumetric CT scanning employed multiplanar 
reconstruction when measuring airways, a method that unlocks more bron-
chial branches for measurement. Despite this, we identified that the larger 
airways in the upper and lower lobes of the lungs were most often studied, 
relying on a single location may not adequately capture the complex 
structural changes that the lungs undergo in disease (e.g. upper vs lower 
airways77). Access to cheap computing allows more complex segmentation 
and wall measuring tools; however, most articles use FWHM which has been 
shown by Gierada et. al and Washko et al. to over-estimate the wall thick-
ness 50,78.  

WA% was by far the most measured parameter within all populations and 
3rd generation WA% was significantly different between all except smoking 
versus asthma populations. The meta-analysis focusing on the COPD popu-
lation vs controls supports the results of the pooled analysis, showing signifi-

cantly increased WA% in the COPD population. Egger’s test and the funnel 
plot demonstrate no strong evidence for publication bias for this bronchial 
parameter. The analysis displayed heterogeneity which was not resolved 
when the sub-groups were analysed, this indicates that the heterogeneity 
does not stem from a difference in the populations. Overall 3rd generation 
WA% appears to be a robust parameter when used to differentiate COPD 
subjects to controls, despite considerable heterogeneity in the data which 
may stem from differences in methodology.

Pi10 was distinctly explored in COPD and smoking populations, and less 
so in asthma and the never-smoking populations. Pooled analysis of bron-
chial parameters shows significant differences between populations despite 
different measurement methodologies however with a considerable overlap 
between the ranges of populations. Pooled Ai normalised to BSA had a smaller 
range than non-normalised Ai and in both cases the numbers in pooled anal-
yses were low. This may indicate that direct measures are not specific enough 
to discern between groups, as other participant/pathologic processes play a 
role in Ai, for example height and sex. Direct measures of bronchial parame-
ters are important building blocks, however derived markers are more likely 
to be robust as they correct for confounding factors.

We noted that the pooled values of Pi10 and WT were larger in the never-
smoking population compared to smokers, and smaller compared to COPD 
participants, due to differences of Pi10 measurements in some of the larger 
studies compared to the others. This was an unexpected finding as current 
literature indicates that never-smoking individuals have less airway inflamma-
tion than smoking, COPD, and asthma populations. The high Pi10 measure-
ment in some studies may be due to several factors. First, Pi10 is calculated 
by plotting a regression line based on several airway measurements, the 
location and method of measurements may strongly influence the slope 
and intercept, leading to differing results79,80. Second, there were more Asian 
participants in the never-smoking pooled value of Pi10. Ethnicity may play a 
role and differences between Asian and Caucasian populations have been 
demonstrated in previous studies81. Thirdly, the smoking and COPD popula-
tions were predominantly older men with a larger number of participants, 
while never-smoking populations tended to be younger and included more 
women. As previous studies have shown, these characteristics play a role 
in bronchial parameters82–86. We were not able to identify suitable measure-
ments to include in the pooled analysis for never-smoking from all studies; 
however, COPDGene noted a Pi10 of 1.69±0.23mm in 44 never-smoking indi-
viduals87, which is much lower than the pooled analysis total. This suggests 
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that while Pi10 may be consistent within a study, differences in the methods 
used to calculate it may not allow for confident comparison between studies.

Limitations

This study had several limitations. First, the pooled analysis could only include 
reported means and standard deviations, which assumes a normal distribu-
tion in the populations but may not reflect the true distribution. Second, due 
to the lack of a detailed breakdown of participants in most reviewed litera-
ture, it was not possible to perform pooled analysis of sub-groups, and so the 
pooled values include both men and women, and a wide range of ages, 
disease states (e.g. non-severe and severe asthma, or GOLD I-IV COPD) and 
backgrounds (Caucasian, Asian, African-American). Finally, while there are 
multiple novel potential bronchial parameters emerging due to advancing 
computation and automation, such as airway tapering and total airway 
count23,88–91, we were able to focus only on the parameters that were avail-
able for data extraction. Lastly, of the papers included for meta-analysis, only 
one obtained post-bronchodilation CT measurements88. While post-broncho-
dilator pulmonary function testing was the norm for studies utilising this tech-
nique, it was not used during the CT scan, indicating a difference between 
the acquisition of spirometry and the CT. 

Conclusions

There are significant differences in bronchial parameters between popu-
lations, most notably in the wall area percentage of the 3rd generation 
airway; however, there is a large overlap in their ranges. While previous 
studies demonstrate that Pi10 can differentiate disease states within a study, 
our analysis indicates it may not be a robust parameter when comparing 
different studies. A paucity of never-smoking participants, along with heter-
ogenous wall measurement methodology, may explain the diverging results 
from studies on the influence of participant characteristics in bronchial 
parameters.
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Abstract

Airways segmentation is important for research about pulmonary disease but 
require a large amount of time by trained specialists. We used an openly 
available software to improve airways segmentations obtained from an 
artificial intelligence (AI) tool and retrained the tool to get a better perfor-
mance. Fifteen initial airway segmentations from low-dose chest computed 
tomography scans were obtained with a 3D-Unet AI tool previously trained 
on Danish Lung Cancer Screening Trial and Erasmus-MC Sophia datasets. 
Segmentations were manually corrected in 3D Slicer. The corrected airway 
segmentations were used to retrain the 3D-Unet. Airway measurements were 
automatically obtained and included count, airway length and luminal 
diameter per generation from the segmentations. Correcting segmentations 
required 2–4 hours per scan. Manually corrected segmentations had more 
branches (p < 0.001), longer airways (p < 0.001) and smaller luminal diameters 
(p = 0.004) than initial segmentations. Segmentations from retrained 3D-Unets 
trended towards more branches and longer airways compared to the initial 
segmentations. The largest changes were seen in airways from 6th genera-
tion onwards. Manual correction results in significantly improved segmenta-
tions and is potentially a useful and time-efficient method to improve the AI 
tool performance on a specific hospital or research dataset.

Background

Airway segmentation from computed tomography (CT) scans is important 
in the study of pulmonary disease such as chronic obstructive pulmonary 
disease (COPD)14. High-quality airway segmentation datasets are difficult to 
create, yet they are necessary for the training of artificial intelligence (AI) 
tools. Manually segmenting airways from noisy low-dose CT scans is time 
consuming and error prone, and methods that can provide adequate large 
airway segmentation via region growing may fail and require manual correc-
tion92,93. 

The volume of thoracic CT scans in clinical care will increase due to an 
increasing respiratory disease burden and the introduction of imaging-based 
cancer screening37. Computer assistance will become increasingly important 
in the radiology workflow. This should be supplemented with robust AI tools that 
can increase the accuracy and speed of diagnosis. Medical datasets used to 
train AI tools are typically small, due to the limited availability of imaging data 
and ground-truth annotations. In contrast, there is a wide range in possible 
CT scanning and population characteristics. Thus, pre-trained AI tools have 
issues generalizing when tested on new data, with typically different charac-
teristics. In such a setting, the need for quickly adapting an existing AI model 
trained on different data may prove very useful.

AI segmentation tools are being widely studied for their potential in automa-
tion, accuracy, and reliability, however their use comes at the cost of flexibility 
inherent in AI systems. To achieve the highest accuracy, AI requires training 
on scans like those it will be used on. X-ray tube current, voltage, reconstruc-
tion methods and other parameters change the resulting CT image and may 
have an impact on segmentation performance7.

So far, the methodology for obtaining high quality ground truth segmenta-
tions of airways using openly available tools is lacking. While many airway 
segmentation tools already exist, those that provide a highly detailed 
segmentation may be only available for sale, are run as a service or tied to 
specific CT scanner brands and hospital/research setup94,95. 

In this study we propose a solution to prepare good ground-truth segmen-
tations by improving the airway segmentations that were obtained using 
openly available tools, and investigate the change in AI performance on our 
low-dose chest CT protocol following re-training using the corrected segmen-
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tations32.

Figure 3.1 - A 3D Slicer workspace for fast identification and correction of incomplete 
airways. Yellow: Incomplete airway segmentation of an ImaLife participant. Red: 
manual correction of the airway.

Methods

Initial Segmentations 

We used a 3D-Unet method96,97 designed for automatic airway segmenta-
tion. The 3D-Unet is a deep-learning model for biomedical image segmen-
tation, which classifies image voxels as airway/non-airway. The image filters 
in the convolution layers of the method were optimised automatically using 
training images and reference segmentations. For all our experiments, we 
used the same 3D-Unet model layout and hyperparameters as in96, which 
were found to be well-suited for airway segmentation.

The current 3D-Unet was trained on Danish Lung Cancer Screening Trial 
(DLCST)98 and Erasmus MC-Sophia data (paediatric cystic fibrosis patients)9. 
This model was used to obtain initial airway segmentations from scans of 
fifteen randomly selected participants from the ImaLife study32. The CT scans 
used were low-dose unenhanced, obtained using a 16-slice CT scanner 
(Somatom Sensation 16, Siemens Medical Solutions) with a pitch of 3 (with 
FOV 350) or 2.5 (with FOV 400) and 1mm increments at a tube voltage of 
120kVp and reference current of 20mAs99. Images were reconstructed with 

overlapping 0.7-mm increments using the Qr59 kernel. The ImaLife study is 
part of the northern Netherlands’ study and includes participants of at least 
45 years of age from the general population. Complete details on ImaLife 
patient characteristics can be found in table S1 and the referenced mate-
rial32. Differences in population and scanning parameters for DLCST and 
ErasmusMC datasets compared to ImaLife dataset contributed to incom-
plete initial segmentations. The prediction threshold of the 3D-Unet proba-
bility maps was set to 0.5, which resulted in a low number of false positive 
airways in the initial segmentations so that most corrections required addition 
of missing branches, rather than removal of false branches. 

Figure 3.2 - An example of an incomplete segmentation of an ImaLife participant’s 
airway tree (in yellow) of the left lung, and a manually corrected segmentation (in 
red) of the right lung.

Manual Correction of Segmentations

Initial segmentations were imported into 3D Slicer 4.1 (http://www.slicer.
org)100. Window settings were set to a width of 800 and a level of -625 to 
better visualise the airway lumen. One medical doctor with 6 months of work 
and training in pulmonology (I. D.) performed the manual corrections of 
segmentations.

The workflow screen displayed the coronal, sagittal, and transverse and 
three-dimensional (3D) views (Fig. 3.1). Corrections were performed using the 
segment editor tool in 3D Slicer100. The binary segmentation provided by the 
3D-Unet was imported into the segment editor. Next, the airways segmenta-
tions were completed using the paint tool, with a spherical brush and brush 
size dynamically set to 1–3% of the active window size, based on the size of 
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the airway. 3D Slicer provides tools to follow along an incomplete airway in 
the 3D view and identify it on the three views. In this manner it was possible to 
quickly complete airway segmentations as they were identified on all three 
orientations simultaneously, with the results instantly visible on the 3D view.

The initial segmentation was combined with the corrections and exported 
as a set of DICOM slices. A standard operating procedure is provided in the 
supplemental materials, explaining the process in detail (S1 Manual Correc-
tion of Airways).

Figure 3.3 - Two examples of large mucous plugging with total focal occlusion of the 
airway of an ImaLife participant. The 3D-Unet completed segmentation of branches 
distal to the occlusion without supervision.

3D-Unet Evaluation

We used the 15 corrected ImaLife scan segmentations to train a new 
3D-Unet, referred to as “retrained” model. For training and evaluation, we 
used a 5-fold cross-validation setting, splitting the dataset into 5 groups of 
equal size, and training 5 different models, assigning for each model one split 
group as testing set, and using the remaining 4 of the 5 data as training set. 
Within each training fold, 83% of data is used for model weight updating, and 
the remaining 17% for model selection. We evaluate each trained model on 
their corresponding independent testing set. Each training fold contains 12 
scans. Despite the small number, the 3D-Unet96 was validated with varying 
sizes of training sets and the learning curves show good performance with 
similar numbers of scans.

To assess the AI performance by introducing a larger set of heterogeneous 
data, we trained a second model with a combination of ImaLife, DLCST 
and ErasmusMC data, referred to as “combined” model. We used the same 
5-fold cross-validation split of the ImaLife data as for the “retrained” model 

above, adding 20 scans each from DLCST and ErasmusMC to the training 
folds. Trained models were used to segment airways from ImaLife scans for 
comparison to the initial segmentations. The overall process is summarised in 
the flowchart shown in Fig. S3.1.

Analysis of Segmentations and Statistical Analysis

From the segmentations obtained by the 3D-Unet, branches and their gener-
ation number were extracted automatically, similarly to methods used in 
the EXACT ’09 paper92. The airway generation was defined as the number of 
branch bifurcations counted in the path linking the given branch and the first 
branch in the airway tree, i.e., the trachea. Thus, the trachea is generation 
0, main bronchi generation 1, etc. Automatic measurements of lumen diam-
eter were obtained every 1mm along the centreline of and averaged per 
branch. The branch length was calculated as the distance between bifurca-
tions along the centreline of a branch.

Comparison was made between the initial segmentations and segmen-
tations from the retrained and combined models trained with the manu-
ally corrected segmentations. Results were analysed using Python (Python 
Software Foundation, https://www.python.org/) and the SciPy package101. 
Wilcoxon Signed Rank test with Bonferroni correction was used for analysis. All 
comparisons were to the initial, incomplete segmentations. A p value lower 
than 0.05 was considered significant.

Results

Segmentations

Fifteen ImaLife scans were segmented by the initial 3DUnet and manually 
corrected (Fig. 3.2). In two cases of large mucous plugging, the 3D-Unet 
continued to segment the airways beyond the blockage without the need 
for manual interaction (Fig. 3.3). The time to complete a manual correction 
ranged from 2 to 4 hours. 

Airway Count

The initial, incomplete segmentations had the lowest median count of 151 
airways (interquartile range [IQR] 131–169) followed by the retrained model 
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segmentation with 170 airways (IQR 161–197) (p = 0.098, initial vs retrained), 
the combined model segmentation with 174 airways (IQR 146-201) (p = 0.089, 
initial vs combined). The manually corrected segmentation had the highest 
median number of airways with 179 airways (IQR 167–215) (p < 0.001, initial 
vs manual) (Fig. 3.4a). The largest differences were seen in airways from 6th 
generation onwards (Fig. S3.2). The tabulated data is presented in Table S3.2.

Figure 3.4 - Boxplots for retrained and for combined retrained 3D-Unets. (a) Total 
airway count per segmentation; (b) total airway length per segmentation; (c) median 
luminal diameter per segmentation. ns Not significant, * p < 0.05, ** p < 0.01, ***p < 
0.001.

Airway Length

Airway length increased with manual correction and retraining. The initial 
segmentation had a total airway length of 2,319.6 mm (IQR 1,905.4–2,588.7 
mm) which was the lowest among all segmentations. This was followed by 
the combined model segmentation, retrained model segmentation and 

corrected segmentation, with airway lengths of 2,561mm (IQR 2,309.2–3,067.3 
mm) (p = 0.079, initial vs combined), 2,622.2 mm (IQR 2,296.1–3,492.8 mm) (p 
= 0.051, initial vs retrained), and 2,917.3 mm (IQR 2508.8–3,492.8 mm) (p < 
0.001, initial vs corrected), respectively (Fig. 3.4b). Airways from the 6th gener-
ation onwards showed the largest differences (Fig. S3.3).

Airway Lumen

Relative to the initial segmentation airway lumen diameters of 5.5 mm (IQR 
5.0–5.9 mm), the airway lumen diameters decreased with correction to 5.3 
mm (IQR 4.9–5.6 mm) (p = 0.009, initial vs corrected) and the retrained model 
lumen diameters decreased to 4.9 mm (IQR 4.7–5.5 mm) (p = 0.004, initial vs 
retrained), however there was no significant difference between the initial 
segmentation diameters and the combined model segmentation diame-
ters of 5.0 mm (IQR 4.6–6.1 mm) (p = 0.172, initial vs combined) (Fig. 3.4c). 
Detailed breakdown per generation is available in Fig. S3.4.

Discussion

We outlined the process for correcting airway segmentations from initial, 
incomplete segmentations on low-dose CT scans for the purpose of training 
AI tools. Manual correction resulted into a significantly more complete airway 
segmentation, and retraining the 3D-Unet resulted into improved segmen-
tations, with the greatest changes seen from the 6th generation onwards. 
Notably, small airways play an important role in lung diseases such as asthma, 
COPD, and cystic fibrosis and their accurate detection can be important for 
the accurate diagnosis and sensitive monitoring of respiratory illness102,103. A 
focus on improving the segmentation of smaller airways could therefore help 
in the research of bronchial parameters of early disease104. With our methods 
it is possible to quickly improve airway segmentations and retrain an AI model. 

The research for robust bronchial parameters sometimes includes the eval-
uation of aggregate measures, such as total airway count and airway 
tapering88,89. If these measures are obtained from incomplete segmentations, 
the summary measure may be incorrect. This is illustrated in our study by the 
decrease in median lumen diameter after correction and retraining. The 
initial segmentation included too much of the lumen wall and did not include 
enough of the smaller airways that were visible on the CT scan. This resulted in 
a significantly larger median airway lumen aggregate measure.

One of the main challenges for AI training in radiology is that often only small, 
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specific datasets from a narrow range of scanning parameters and popu-
lation characteristics are available for model training and current manual 
segmentation methods can take up to 15 hours to complete for one patient9. 
This makes the design of AI tools that generalize well to data from a broader 
range of scan parameters and population characteristics very difficult to be 
built. In turn, pretrained AI models tasked with segmentation may fail when 
used on data dissimilar to their training dataset. Several AI airway segmen-
tation tools have been reported in the literature, which are typically trained 
and tested on their own in-house datasets and reference segmentation105,106. 
However, when deploying the trained AI methods on other data with 
different characteristics and scanning parameters, their performance may 
drop drastically107. Retraining with use-case specific data allows for the use of 
AI models in institutions with different scanning techniques.

The aim of DLCST and Erasmus MC-Sophia dataset addition was to improve 
the AI performance with heterogeneous data, as DLCST scanning protocol 
differs slightly, and Erasmus MC-Sophia includes paediatric Cystic Fibrosis 
patients. However, the combined model did not significantly improve AI 
performance for ImaLife scans.

To segment small airways in low-dose scans or airways beyond occlusions, 
typically requires manual intervention. A couple of the scans in our study 
contained mucous plugging, which prevents segmentation of the airways 
beyond it when using traditional methods. However, we observed the contin-
uation of segmentation despite large blockages. 

A strength of this paper is the use of openly available tools for the method-
ology. While this technical note focuses on airway segmentations, the same 
methods can be used to optimise potentially any other segmentation. Our 
methods are also much less time costly than preparing fully manual airway 
reference segmentations. 

The limitations of this study are the investigation of just one dataset, with a 
small sample size, based on low-dose CT acquired at high-pitch in a general 
adult population. Despite the small data-set, previous investigations of 
3D-Unet learning curves shows that models trained with small datasets of just 
14 images had just slightly lower performance than the model with 28 images 
[9].  The manual corrections have been performed by one researcher; within 
the context of this project, we did not assess the impact of inter-observer 
variability on the completeness of segmentations.

In conclusion, we showed that openly available software can be used to 
manually correct initial, incomplete airway segmentations with significant 

improvement. The resulting segmentations can be used to retrain AI models 
to increase their efficacy for different scanning protocols and applications. 
This allows for the quick creation of datasets for AI training that match their 
use case.
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Abstract

Objectives - Computed Tomography (CT)-based bronchial parameters 
correlate with disease status. Segmentation and measurement of the bron-
chial lumen and walls usually requires significant manpower. We evaluate the 
reproducibility of a deep learning and optimal-surface graph-cut method to 
automatically segment the airway lumen and wall and calculate bronchial 
parameters. 

Methods – A deep-learning airway segmentation model was newly trained 
on 24 Imaging in Lifelines (ImaLife) low-dose chest CT scans. This model was 
combined with an optimal-surface graph-cut for airway wall segmentation. 
These tools were used to calculate bronchial parameters in CT scans of 188 
ImaLife participants who had two scans an average of 3 months apart. Bron-
chial parameters were compared for reproducibility assessment, assuming 
no change between scans.

Results - Of the total 376 CT scans, 374 CT scans (99%) were successfully 
measured. Segmented airway trees contained a mean of 10 generations 
and 250 branches. Coefficient of determination (R²) for Luminal Area (LA) 
ranged from 0.93 at the trachea to 0.68 at the 6th generation, decreasing to 
0.51 at the 8th generation. Corresponding values for Wall Area Percentage 
(WAP) were 0.86, 0.67 and 0.42, respectively. Bland-Altman analysis of LA and 
WAP per generation demonstrated mean differences close to 0; Limits of 
Agreement (LoA) were narrow for WAP and Pi10 (±3.7% of mean) and wider 
for LA (±16.4-22.8% for 2-6th generations). From the 7th generation onwards, 
there was a sharp decrease in reproducibility and a widening LoA.

Conclusion - The outlined approach for automatic bronchial parameter 
measurement on low-dose chest CT scans is a reliable way to assess the 
airway tree down to the 6th generation.

Introduction

Bronchial parameters are increasingly being investigated for use in char-
acterisation of pulmonary disease such as chronic obstructive pulmonary 
disease (COPD)14. A potential benefit of developing robust bronchial param-
eters is early detection of pulmonary disease. For example, screening for 
lung cancer with Computed Tomography (CT) may offer the opportunity 
for the evaluation of “off-target” organ systems such as the heart, bronchi, 
and vasculature34. While bronchial parameters could be used for evalua-
tion of pulmonary disease, their use is limited by the man-hours necessary 
for (manual) measurements. This step is further complicated by the low dose 
of screening CT scans, which can result in a worse image quality with more 
noise. Due to this, the development of reliable automated methods for CT 
bronchial parameter measurement is a necessary step.

To calculate bronchial parameters, most methods require segmenting and 
measuring the airway lumen and wall from chest CT scans. Segmentation of 
the airway lumen is challenging, due to the complex structure of the airway 
tree and small size of most branches. Recently, deep learning methods for 
automatic segmentation of the airway lumen have achieved success96,108–

111. Segmentation of the airway walls in the smaller branches is even more 
demanding, due to its small thickness and low contrast between the wall, 
lumen, and surrounding parenchyma. The thickness of the wall may fall 
below the scanner resolution, therefore lacking the stark contrast available 
in the larger airways. Airway wall segmentation has received less attention; 
currently there are no automatic methods to obtain this directly from the 
CT scan without an initial seed placement or lumen segmentation7. Instead, 
the airway wall can be obtained as an additional refinement step using, for 
example, full-width at half-maximum112, phase congruency113 or optimal-sur-
face graph-cut methods10.

To evaluate early biomarkers of respiratory disease on low-dose chest CT 
scans, we built an automated pipeline for segmenting and quantifying the 
airway lumen and wall. We did this by combining two validated, open-source 
methods, for obtaining the airway lumen and wall segmentations, respec-
tively. While previous studies have evaluated AI on lumen segmentations, we 
could not identify studies that have assessed their reproducibility when also 
measuring the airway wall in a fully automated way. Further, this is the first 
combination of these 3D-Unet and 3D optimal-surface graph-cut methods 
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for fully-automated bronchial parameter evaluation. We aim to quantify 
the repeatability of this pipeline on low-dose chest CT. Subsequently, we 
computed the bronchial parameter measurements. We tuned this pipeline 
for the low-dose chest CT scan protocol and investigated its reproducibility 
using short-term repeated scanning.

Methods

CT Scans

Scans for this study were obtained from the Imaging in Lifelines (ImaLife) 
study, which was approved by the local medical ethics committee, and is 
registered with the Dutch Central Committee on Research Involving Human 
Subjects (https://www.toetsingonline.nl, Identifier: NL58592.042.16)

All scans were obtained using third generation dual source CT (Somatom 
Force, Siemens Healthineers). Imaging was performed with the participants 
in supine position and coached to hold their breath at maximum inspira-
tion. The ImaLife scanning protocol for lung imaging was as follows: 120 kVp, 
20mAs, pitch 3.0 (2.5 in large habitus), 1/0.7mm slice thickness/increment and 
Dose Length Product (DLP) of <100mGycm. Images were reconstructed with 
a quantitative-sharp reconstruction kernel (Qr59)32.

Lumen Segmentation

We used a deep learning airway segmentation method (Bronchinet)96, based 
on a 3D U-Net model, to automatically obtain airway lumen segmentation 
from the CT scans. For training, we used a dataset of 24 ImaLife scans to train 
Bronchinet from scratch, with ground truth airway segmentations generated 
with a previously reported method114. From the full dataset, we used 22 scans 
for training (i.e., optimize the model weights) and the remaining 2 scans for 
validation (i.e., early stopping and model convergence). The Bronchinet 
method was validated in a previous paper with a training set of similar size 
showing good performance96. We assessed the model performance using 
6-fold cross-validation.

Variable Number or mean±SD
Participants 168 (100%)
    Male/Female 98 (58%) /70 (42%)
    Never-smoking 40 (24%)
    Smoking 76 (45%)
    COPD 39 (23%)
    No status 13 (8%)
Age (years) 59.6±9.4
BMI (kg/m2) 26.46±3.78
Pack-Years* 14.7±8.1
TLV (L) 5.52±1.28
Pi10 (mm) 3.92±0.12
WAP (%) 56.4±3.42
LA (mm2) 42.0±2.31
TAC (n) 250±54

Table 4.1 - Characteristics of participants. Data displayed as mean and standard 
deviation or number (percentage). Mean CT measurements were calculated from 
the first scan. BMI – Body Mass Index, N – Number, SD – Standard Deviation, TLV – Total 
Lung Volume, WAP – Wall Area Percentage, LA – Luminal Area, TAC – Total Airway 
Count. * Pack-years does not include never-smokers.

Figure 4.1 - A) 3D rendering of the airway lumen (yellow) and wall (blue) of an ImaLife 
participant CT scan. Disconnected components (grey) were discarded prior to bron-
chial parameter measurement. Maximum generation - 8 B) 2D overlay of the airway 
lumen (yellow) and wall (blue) segmentations on sagittal, coronal, and axial planes 
respectively.
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Wall Segmentation

An optimal-surface graph-cut method (Opfront)10,115 was used to refine the 
Bronchinet airway lumen segmentations and obtain the wall segmentation. 
Opfront performance was tuned on several parameters, which depend on 
the scan resolution and protocol. We optimized the Opfront parameters using 
the COPDGene phantom, scanned using the ImaLife protocol116. The opti-
mised parameters were inner and outer derivatives, smoothness penalties/
constraints and surface separation penalty. These parameters were focused 
on as they most strongly influence the resulting lumen and wall segmentation. 
For all other parameters we used the values suggested in Petersen 201510. The 
lumen and total diameters of the Opfront segmentation for the phantom 
tubes were measured and compared to the known dimensions. To automat-
ically search for the optimal parameter values, we used the Tree-structured 
Parzen Estimator algorithm117, which modified parameters if the measurement 
error between phantom measurements and known dimensions was large10. 
Once phantom measurements were close to the known dimensions, Opfront 
was considered optimised.

Measurement of Branches

From the airway lumen segmentations obtained by Bronchinet, discarding 
disconnected components. individual branches  were extracted using a 
front-propagation method as described in the EXACT’09 challenge92,118. 
Branch generations were determined based on Weibel’s airway model, 
which defines a new generation at each branching point2. Measurements of 
the airway lumen and wall radii were calculated for all branches, measured 
at regular intervals of 0.5 mm along the branch centreline and averaged. 
Terminal branches of less than 2mm in length were automatically discarded.

Automated Pipeline

We combined the Bronchinet and Opfront methods in an automated pipe-
line to obtain the wall segmentation and bronchial parameter measurements 
directly from input CT scans. For this we built a docker image119 to link both 
tools and manage software dependencies. This allows deploying the pipe-
line in any computing system featuring at least 16GB RAM and a CUDA-com-
patible graphics card with at least 8GB memory.

Reproducibility Study

188 ImaLife participants with two scans an average of 3 months apart were 
included. None of these participants were included for the Bronchinet model 
training. For more information on the ImaLife study, please see prior publica-
tions32,120. Participants were invited for a short-term repeat scan for scientific 
purposes in case of an intermediate nodule (100–300mm³) on the first scan. 
All scans were automatically processed by the proposed pipeline. Inspiration 
levels were quantified based on the total lung volume (TLV), derived from 
automated lung segmentation106. Participants with a difference in inspiration 
defined by a TLV difference between first and second scans greater than 
15% were excluded from analysis75. Bronchial parameters were automatically 
calculated from airway branch lumen and wall radii, namely luminal area 
(LA), wall area percentage (WAP), and square root of the wall area (SRWA) 
at a hypothetical airway with internal perimeter of 10mm (Pi10). Pi10 was 
calculated by linear regression of SRWA compared to the internal perimeter 
of the airway branch, excluding the trachea, and including branches up to 
and including the 6th generation (Fig. S4.1)121. 

Statistical Analysis

To measure the reproducibility of the pipeline, the coefficient of determina-
tion (R²) was calculated for bronchial parameters per airway generation by 
first and second CT scan comparison. An R² of >0.7 was considered good, 
0.7-0.5 moderate, <0.5 poor122. Bland-Altman analysis was performed to 
calculate the Limits of Agreement (LoA) for each bronchial parameter per 
generation. The python package statsmodels (v 0.13.5) was used for statis-
tical analysis123.

Results

Bronchinet and Opfront Performance

On the cross-validation assessment of Bronchinet with the 24 ImaLife scans, 
the median Dice overlap coefficient for the obtained airway lumen segmen-
tations was 0.92 (inter-quartile range (IQR), 0.83-0.93), the median centreline 
completeness was 85.2% (IQR 78.8-89.4%) and median centreline leakage 
(indicating predicted false-positive centrelines) was 7.1% (IQR, 3.5-10.8%) As 
the volume of the trachea and main bronchi dominate these values, they 
were excluded to focus on downstream segmentation performance.
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Measurement Error (mm)

Tube Lumen Wall
1 0.09 -0.15
2 0.09 0.03
3 0.09 -0.22
4 -0.00 0.21
5 0.05 -0.01
6 0.04 0.24
7 -0.05 0.33
8 0.14 -0.22

Table 4.2 - Opfront measurement error for phantom tube lumen and wall.

Optimised Opfront segmentation of the COPDGene phantom resulted 
in sub-voxel accuracy. The lumen diameter was estimated within a mean 
unsigned error of 3.1% (0.13±0.07mm), and the total diameter with an average 
unsigned error of 5.8% (0.35±0.20mm) (Table 4.2). The airway segmentations 
were fully 3D and the extracted airways reached the 10th generation on 
average (Figure 4.1). Total execution time was 28±4min per scan. 

Reproducibility Study

Out of 376 scans, 374 (99%) were successfully segmented and measured. 
Twenty of 188 participants were excluded due to a difference in TLV of >15% 
between the first and second scan. The final group comprised 98 male and 
70 female participants with a repeat scanning within 3 months (98±14 days). 
The mean age was 59.6±9.4 and body mass index (BMI) was 26.5±3.8. Of 
the 168 included participants, 40 were never-smokers, 76 were smokers, 39 
had a COPD diagnosis and 13 participants had missing COPD disease status 
(Table 4.1). The mean pack-year history for smokers was 14.7±8.1 years. Mean 
CT measurements were 5.52±1.28L for TLV, 250±54 for total airway count 
(TAC), 42.0±2.3% for 3rd generation LA, 56.4±3.4% for 3rd generation WAP, and 
3.92±0.12 for Pi10. 

Figure 4.2 - A) Reproducibility analysis. Comparison of bronchial parameter measure-
ments between first and second scans per generation by coefficient of determina-
tion. B) Scatter plot and regression line of Pi10 measurement on first and second scans. 
C) Limits of Agreement for Pi10 between first and second scans. R² – Coefficient of 
Determination, SD – Standard Deviation.
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Luminal Area (mm²) Wall Area Percent (%)
Gen MD LoA LoA% MD LoA LoA%
0 -1.10 ±37 ±7.4 0.05 ±1.4 ±5.9
1 -0.19 ±16 ±6.8 0.02 ±2.3 ±6.1
2 0.37 ±19 ±16.4 -0.14 ±3.8 ±6.1
3 0.19 ±9.2 ±12.6 -0.01 ±4.2 ±9.1
4 0.25 ±6.3 ±20.6 -0.13 ±4.5 ±8.5
5 -0.09 ±4.4 ±22.5 0.12 ±4.2 ±7.5
6 -0.10 ±3.7 ±22.8 0.14 ±4.0 ±6.8
7 -0.04 ±3.5 ±28.9 0.12 ±4.5 ±7.4
8 -0.15 ±6.6 ±36.3 0.25 ±5.4 ±9.3

Table 4.3 - Mean Difference (MD) and Limits of Agreement (LoA) and LoA as a 
percentage of overall range (LoA%) between the first and second scan for luminal 
area and wall area percentage per airway generation. Gen – generation.

Coefficient of determination (R²) of LA ranged from 0.93 at the trachea to 
0.68 at the 6th generation, decreasing to 0.51 at the 8th generation. Corre-
sponding values for WAP were 0.86, 0.67 and 0.42, respectively (Figure 4.2A). 

For Pi10, R² was 0.69 (Figure 4.2B) and LoA was ±0.14mm (±3.7% of mean) with 
a mean difference (MD) of 0.00mm (Figure 4.2C). For LA, MD±LoA ranged 
from -0.1±37mm2 at the trachea to -0.1±3.7mm2 at 6th generation, and down 
to -0.15±6.6mm2 at the 8th generation (Table 4.3). For WAP, MD±LoA ranged 
from 0.05±1.4% at the trachea to 0.14±4% at 6th generation and down to 
0.25±5.4% at the 8th generation. LoA expressed as a percentage of mean 
(LoA%) was between ±5.9-9.3% for WAP. LoA% for LA was ±7.4-6.8% at 0-1st 
generations, widening to ±16.4-22.8% for 2nd to 6th generations and further 
increasing to ±28.9-36.3% at 7th to 8th generations (Table 4.3).

Discussion

In this study we built an automated pipeline for low-dose chest CT scans to 
obtain segmentations of the airway lumen and wall by combining two open-
source methods. The resulting segmentations yielded automated quanti-
tative bronchial parameters. Repeated scans showed moderate to good 
reproducibility (R²>0.6) of bronchial parameters down to the 6th generation. 
Bland-Altman analysis showed no systematic bias and narrow limits of agree-
ment for Pi10 and WAP, but wider for LA, demonstrating a lower variability in 
summary parameters like Pi10 and WAP compared to the direct measure-

ment of LA.

Use of low-dose CT scans for lung cancer screening provides the opportunity 
to screen for other early disease such as COPD, bronchiectasis, and cardiac 
disease, which may influence lung cancer risk and/or prognosis. Automated 
bronchial parameter measurement can enable screening of large cohorts 
in a reasonable timeframe with good reliability. Further, the fully 3D segmen-
tation can be readily useful in clinical tasks such as virtual bronchoscopy or 
surgical planning. However, for bronchial parameters, it is hard to determine 
whether the airways are normal or abnormal. The number of never-smokers in 
bronchial parameter research is typically very small124. Combined with heter-
ogenous bronchial parameter methodology, it is unclear what quantitatively 
defines “normal” airways on low-dose CT and by which bronchial parameter. 
This study demonstrated a wider variability in measurements for LA than Pi10 
or WAP. While this could in part concern variability or error due to method-
ology, additional factors like seasonal changes, smoking or illness before a 
scan could result in true differences. Pi10 averages many branches, while 
WAP includes wall thickness in its calculation and so could be more resistant 
than LA to localised variations in measurements. Our pipeline provides similar 
reproducibility of LA and WAP as previous methods on similar datasets10, but it 
also gives better reproducibility of Pi10125. Additionally, it offers fully automatic 
bronchial parameter measurement using low-dose noisy scans.

Various methods can be used as an initial step for lumen segmentation. We 
used Bronchinet due to its state-of-the-art performance96, speed and open-
source availability which enabled retraining on the low-dose scans in this 
study. Fully automated bronchial parameter calculation has been previ-
ously proposed using tools trained on manually traced borders alongside 
older algorithms such as FWHM, intensity-based and phase congruency126,127. 
However, previous research shows that manual and FWHM measurement 
overestimates the airway wall128, which is also evident when used to measure 
the COPDGene phantom (Table S4.2). Compared to these approaches 
the advantage of our method is that Opfront was optimized on a phantom 
with precise physical measurements, eliminating the bias in wall measure-
ments that comes with the previously mentioned approaches. The pipe-
line output is a ready-to-use 3D model of the airways, which has potential 
applications in tasks such as virtual bronchoscopy, airflow simulation, and 3D 
printing. Deploying the pipeline in a docker image provides the method as 
ready-to-use and implementable in clinical practice. For lumen segmenta-
tion good results could be readily achieved by using the publicly available 
trained model bundled with Bronchinet96, which uses airway segmentations 
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for training from the Danish Lung Cancer Screening Trial98 in combination with 
an Erasmus-MC Sophia (cystic fibrosis) dataset9. The ImaLife scan protocol 
has a lower radiation dose with a total DLP of <100mGycm, and more noise in 
the scans; retraining the tools resulted in better performance114. For maximum 
performance on different datasets, optimising the pipeline for the target CT 
protocol may be necessary. This was achieved by re-training the Bronchinet 
with efficiently generated ground-truths, and tuning Opfront using a physical 
phantom.

A limitation of this study is the lack of severe airway disease in the cohort 
as the ImaLife study comprises a general population. Evaluation of severe 
cases is important prior to adoption in a clinical setting, where scan protocol 
may also change. For the analysis we assumed that there are no short-term 
differences in bronchial parameters between the scans. However, factors 
such as illness or smoking before the scan could have an impact on the 
bronchial parameter results. This would tend to increase variability between 
scans, which could mean that the actual scan-rescan repeatability may be 
better than we currently report.  The methods used do not perform anatom-
ical airway labelling, and so we could not compare the repeat measure-
ments of specific airway branches directly. Instead, we focused on average 
values per generation for participants. Lastly, Bronchinet does not guarantee 
a fully connected airway segmentation, some peripheral branches may 
be discarded during measurement. For cases with an occluded lumen, this 
could result in exclusion of segmented airways beyond the blockage.

In conclusion, we demonstrate a comprehensive and fully automatic pipe-
line for bronchial parameter measurement on low-dose CT using open-
source tools. Based on results of short-term repeat CT scanning, the pipeline 
provides reliable bronchial parameters down to the 6th generation. Overall, 
these methods enable the exploration of bronchial parameters in large 
low-dose CT datasets after an initial investment in the training and optimisa-
tion of deep learning and optimal-surface graph-cut methods.
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Abstract

Background: CT-derived bronchial parameters have been linked to chronic 
obstructive pulmonary disease and asthma severity, but little is known about 
these parameters in healthy individuals.

Purpose: To investigate the distribution of bronchial parameters at low-dose 
CT in individuals with healthy lungs from a Dutch general population. 

Materials and Methods: In this prospective study, low-dose chest CT performed 
between May 2017 and October 2022 were obtained from participants who 
had completed the second-round assessment of the prospective, longitu-
dinal Imaging in Lifelines study. Participants were aged at least 45 years, and 
those with abnormal spirometry, self-reported respiratory disease, or signs of 
lung disease at CT were excluded. Airway lumens and walls were segmented 
automatically. The square root of the bronchial wall area of a hypothetical 
airway with an internal perimeter of 10 mm (Pi10), luminal area (LA), wall 
thickness (WT), and wall area percentage were calculated. Associations 
between sex, age, height, weight, smoking status, and bronchial parameters 
were assessed using univariable and multivariable analyses. 

Results: The study sample was composed of 8869 participants with healthy 
lungs (mean age, 60.9 years ± 10.4 [SD]; 4841 [54.6%] female participants), 
including 3672 (41.4%) never-smokers and 1197 (13.5%) individuals who 
currently smoke. Bronchial parameters for male participants were higher 
than those for female participants (Pi10, slope [β] range = 3.49–3.66 mm; 
LA, β range = 25.40–29.76 mm2; WT, β range = 0.98–1.03 mm; all P < .001). 
Increasing age correlated with higher Pi10, LA, and WT (r² range = 0.06–0.09, 
0.02–0.01, and 0.02–0.07, respectively; all P < .001). Never-smoking individuals 
had the lowest Pi10 followed by formerly smoking and currently smoking indi-
viduals (3.62 mm ± 0.13, 3.68 mm ± 0.14, and 3.70 mm ± 0.14, respectively; all 
P < .001). In multivariable regression models, age, sex, height, weight, and 
smoking history explained up to 46% of the variation in bronchial parameters. 

Conclusion: In healthy individuals, bronchial parameters differed by sex, 
height, weight, and smoking history; male sex and increasing age were asso-
ciated with wider lumens and thicker walls.

Introduction

Chronic respiratory diseases are among the top 10 causes of death world-
wide35. Early diagnosis combined with proactive management of chronic 
obstructive pulmonary disease is being explored as one method to reduce 
the associated morbidity and mortality rates129. Although smoking cessation 
remains central to treatment of chronic obstructive pulmonary disease, other 
therapeutic interventions are aimed at reducing symptoms and improving 
quality of life. For both early detection with timely smoking cessation and 
monitoring of treatment response, CT-derived bronchial parameters could 
play a key role14,33,130. Bronchial parameters at CT have been linked to respira-
tory disease severity and progression in symptomatic patients across a variety 
of respiratory illnesses, including chronic obstructive pulmonary disease, 
asthma, and interstitial lung disease11,87,91,131,132. However, underlying physio-
logic differences with respect to sex and age may contribute to bronchial 
parameter variation25,27. For their potential use as a screening or diagnostic 
tool, it is important to consider the distribution and range of these parameters 
in the target population. Currently, most large-scale analyses of bronchial 
parameters have been conducted in individuals who smoke or patients with 
chronic obstructive pulmonary disease, with only limited data in individuals 
who do not currently smoke124. Most of the insights into bronchial parameters 
in healthy individuals originate from small groups of healthy control partic-
ipants who, due to study design and requirements, may not represent the 
healthy general population, with conflicting results for normal values of bron-
chial parameters124. Furthermore, reference values for individuals with healthy 
lungs from general populations have not been well established. The aim of 
this study was to examine the distribution of low-dose CT–derived bronchial 
parameters in individuals with healthy lungs from a Dutch general population.

Materials and Methods

In this prospective study, imaging analysis was performed on data from 
12041 participants from the Imaging in Lifelines (ImaLife) study120, which 
was approved by the local medical ethics committee (University Medical 
Centre Groningen) and is registered with the Dutch Central Committee on 
Research Involving Human Subjects (https://www.toetsingonline.nl; identifier: 
NL58592.042.16). All participants gave informed consent before participation.
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Figure 5.1 - Flowchart of participant inclusion and exclusion and group division. Hx = 
history.

Study Design and Participants

ImaLife is part of the Lifelines multidisciplinary prospective population-based 
three-generation cohort study examining the health and health-related 
behaviours of 167729 persons living in the three northern provinces in the 
Netherlands120. The ImaLife study focuses on imaging biomarkers for the 
general population from low-dose CT scans. That study includes partici-
pants aged 45 years and older who completed a lung function test during 
the second-round assessment of the Lifelines study and who were invited 
to undergo low-dose chest CT between May 2017 and October 2022. The 
full study design was published previously32 and includes participant recruit-
ment and sample size estimation. Previous analyses of ImaLife participants 
are listed in Table S4.1. Because the focus of the current study was on indi-
viduals with healthy lungs, participants with self-reported history of pulmo-
nary disease, medication use for respiratory disease, or abnormal spirometry 
according to the lower limit of normal for percent predicted forced expira-
tory volume in 1 second of expiration or forced expiratory volume in 1 second 
of expiration to forced vital capacity ratio were excluded (Appendix S1). 
Participants with CT features of respiratory disease, such as interstitial lung 
disease, emphysema, bronchiectasis, and infection, and those with inad-
equate airway segmentation were also excluded from the study. Details 
of lung findings at CT leading to exclusion are described in Appendix S1. 

Figure 5.2 - (A) Three-dimensional rendering of an exemplary airway segmentation. 
(B) Coronal view of a low-dose CT example of airway lumen and wall segmenta-
tion along the length of an airway (yellow outline). (C) Multiplanar reconstructed 
low-dose CT section perpendicular to the airway centre line demonstrates the airway 
lumen (blue outline) and wall (yellow outline) segmentation boundaries. (D) Example 
measurements of lumen radius (blue dashed line) and total radius (red dashed line). 
These measurements are obtained every 0.5 mm along the centre line of the airway. 
They are used to calculate the rest of the bronchial parameters: the luminal area 
(blue region) and wall area (yellow region).

Participants were split into groups based on their smoking history (i.e., never, 
former, and current), and their bronchial parameters were measured and 
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analysed, consisting of the square root of the bronchial wall area of a hypo-
thetical airway with an internal perimeter of 10 mm (Pi10), luminal area (LA), 
wall thickness (WT), and wall area percentage.

Definitions of Terms

Never smoking was defined as a 0 pack-years history, former smoking as self-re-
ported quitting smoking without restarting smoking, and current smoking as 
self-reported smoking within the last month of answering the questionnaire 
and not reporting having quit smoking. 

Image Acquisition and Reconstruction

Each participant underwent a supine inspiratory chest CT examination based 
on a low-dose non-contrast volumetric scan protocol, using a third-gener-
ation dual-source CT scanner (Somatom Force; Siemens Healthineers). For 
scan reconstruction, a hard Qr59 kernel that was designed for quantitative 
purposes was used with section thickness of 1 mm and section increment of 
0.7 mm.

Image Analysis

Scans were automatically processed to calculate bronchial parameters. 
The airway lumen was extracted using a three-dimensional U-Net as previ-
ously described96. Next, the airway lumen was refined, and the outer wall 
segmented using an optimal-surface graph-cut method115. This in-house pipe-
line (https://github.com/id-b3/AirFlow-ImaLife) was validated previously in a 
representative sample of the ImaLife data set with good reproducibility133. 
Segmentations were automatically flagged for review when unusually low or 
high lung volume, airway volume, airway count, or rapid radius changes indi-
cated potential segmentation errors. The segmentations flagged for review 
were combined with a random sample of nonflagged segmentations for a 
total of 2000 segmentations reviewed by a medical doctor (I.D., with 3 years 
of experience in airway segmentation research and evaluation and experi-
ence in radiology and pulmonology departments) who was blinded to partic-
ipant characteristics. A three-point Likert scale was used to evaluate quality 
for leaks, segmentation completeness, and segmentation extent (Appendix 
S2). Several bronchial parameters were calculated from measurements of 
the lumen and total radii taken every 0.5 mm along the centreline of the 
airway segmentation. The average of these measurements per branch was 
used to calculate the lumen radius (LR) and total radius (TR). LR and TR were 

used to calculate the following parameters: LA = π(LR)²; WT = TR – LR; and 
WAP = [(TA – LA)/TA]100, where WAP is wall area percentage and TA is total 
area, calculated as π(TR)². Pi10 was calculated using airways from genera-
tion zero (trachea) through six. The sixth airway generation was chosen as 
a threshold based on the robustness of airway measurements17. The square 
root of the bronchial wall area was plotted against the internal perimeter per 
branch, and a robust regression line was calculated17. Pi10 was measured at 
the intercept for an internal perimeter of 10 mm (Fig. S5.1). LA, WT, and wall 
area percentage were averaged across airway generations three through 
five10. 

Figure 5.3 - Stacked bar plot shows the feature importance of independent variables 
for each bronchial parameter. Feature importance was calculated using the coeffi-
cients of the independent variables sex, age, height, weight, and combined smoking 
history from normalized multivariable linear regression models for each of the bron-
chial parameters. Hx = history, LA = luminal area, Pi10 = square root of the wall area of 
a hypothetical airway with an internal perimeter of 10 mm, WT = wall thickness.

Statistical Analyses

The Student t-test was used to compare group means by sex with Bonferroni 
correction for multiple comparisons. One-way analysis of variance with the 
Tukey honest significant difference post hoc test was used to assess means 
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across groups based on smoking history. Percentiles (10th–90th) for each bron-
chial parameter were determined for sex and smoking status using 5-year 
age categories. To examine the strength and direction of relationships 
between age, height, weight, and bronchial parameters, univariable linear 
regression was performed, and the slope (β) and coefficient of determination 
(r²) were calculated. Additionally, multivariable linear regression models were 
created for each bronchial parameter incorporating the independent vari-
ables sex, age, height, weight, smoking status, and pack-years. The adjusted 
R² was used to investigate explained variance for each multivariable model. 
To assess feature importance, independent variables were normalized, 
and the absolute value of the resulting coefficients was visualized for each 
model. Last, equations for calculating reference bronchial parameters were 
derived and adjusted for sex, age, height, weight, smoking status, and pack-
years. The threshold for significance (α) was indicated by .05. When Bonfer-
roni correction was used, the threshold for significance was indicated by 
.0038. Statistical analyses were performed (I.D.) using SciPy and Statsmodels 
(Python, version 3.10; Python Software Foundation).

Results 

Participant Characteristics

Of 12041 participants, 1323 were excluded for abnormal spirometry, 888 for 
history of respiratory disease, 399 for imaging features of respiratory illness, 47 
for missing smoking data, and 515 for inadequate bronchial segmentation 
(Fig. 5.1). A total of 8869 participants (mean age, 60.9 years ± 10.4 [SD]; 4841 
[54.6%] female participants, 4028 [45.4%] male participants) were included; 
3672 (41.4%), 4000 (45.1%), and 1197 (13.5%) were never smoking, formerly 
smoking, and currently smoking, respectively (Table 5.1). The mean pack-
years were 16.9 pack-years ± 11.5 for individuals who currently smoked and 
10.4 pack-years ± 9.7 for individuals who formerly smoked. Height (mean, 1.81 
m ± 0.07 vs 1.68 m ± 0.06; P < .001), weight (mean, 86.8 kg ± 12.4 vs 73.7 kg 
± 12.5; P < .001), smoking pack-years (mean, 13.9 pack-years ± 11.9 vs 9.8 
pack-years ± 9.2; P < .001), and total lung volume (mean, 6.1 L ± 1.2 vs 4.7 
L ± 0.8; P < .001) were greater in male participants than in female partici-
pants, respectively. Exemplary segmentation of airway tree, lumen, and wall 
borders is shown in Figure 5.2. Visual scoring of the random sample of scans 
from the included participants showed a mean quality of 2.86 ± 0.43 for leaks, 
2.86 ± 0.44 for completion, and 2.63 ± 0.59 for extent (Fig. S5.2).

Bronchial Parameter Distribution and Percentile Values

Pi10, LA, and WT were larger and wall area percentage was smaller in male 
participants compared with female participants (P < .001; Table 5.1). These 
sex differences were still observed when stratified by smoking status (Table 
S5.2). Bronchial parameters are provided as percentile values per age cate-
gory in Table 5.2 for men and Table 5.3 for women. Generally, it was observed 
that with increasing age, Pi10 and WT increased, and the LA widened. 
Furthermore, it was observed that wall area percentage decreased until age 
65–70 years, when it began to increase again. These observations were also 
observed when male participants and female participants were categorized 
as individuals who never smoked (Table S5.3) and individuals who currently 
smoke (Table S5.4).

Univariable Analysis Assessing Relationships Between Partici-
pant Characteristics and Bronchial Parameters

For both sexes, univariable linear regression analysis showed a positive but 
weak correlation of age, weight, and body mass index (calculated as weight 
in kilograms divided by height in meters squared) with Pi10 (β range, 0.01–
0.04; r² range, 0.06–0.13; P < .001) (Table 5.4). Although a small change in Pi10 
for a unit increase in height was shown, there was no evidence that one vari-
able explained the other for male and female participants (β = 0.08, −0.08; 
r² = 0; P = .02, .004, respectively). There was a weak positive correlation of 
age, weight, and body mass index with WT for both sexes (β = 0.01; r² range = 
0.02–0.16). For both sexes, age and height displayed a weak positive correla-
tion with LA (β range = 0.56–11.5; r² range = 0.01–0.02), while weight and body 
mass index were negatively correlated (β range = −0.37 to −0.16; r² range = 
0.0–0.03). This result was reversed for wall area percentage (β range = −6.56 
to −0.1, r² range = 0.0–0.02 for age and height; β range = 0.2–0.58, r² range = 
0.03–0.09 for weight and body mass index). Comparing bronchial parame-
ters between participants stratified by smoking history, individuals who never 
smoked had lower values for Pi10 versus former and current smokers (Pi10: 3.62 
mm ± 0.13, 3.68 mm ± 0.14, and 3.70 mm ± 0.14 for never, former, and current 
smoking male participants, respectively; 3.47 mm ± 0.13, 3.49 mm ± 0.13, and 
3.53 mm ± 0.14 for never, former, and current smoking female participants, 
respectively; P < .001 for all comparisons; Table S5.2). In male participants 
who formerly smoked, the LA value was larger than that in current smokers 
(LA mean difference, 0.863 mm2; P = .004; Table S5.5).
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Characteristics Total Male Female P-value

Participants 8869 (100%) 4028 (45.4%) 4841 (54.6%)

Age (Years) 60.9±10.4 61.7±10.8 60.2±10.1 <.001

Height (m) 1.74±0.09 1.81±0.07 1.68±0.06 < .001

Weight (kg) 79.7±14.1 86.8±12.4 73.7±12.5 < .001

BMI (kg/m²) 26.18±3.81 26.37±3.27 26.02±4.19 < .001

Smoking history:

Never 3672 (41.4%) 1562 (42.5%) 2110 (57.5%)

Former 4000 (45.1%) 1852 (46.3%) 2148 (53.7%)

Current 1197 (13.5%) 614 (51.3%) 583 (48.7%)

Pack Years* - Total 11.8±10.8 13.9±11.9 9.8±9.2 < .001

Pack-years - Former 10.4±9.7 12.7±11.3 8.1±8.1 < .001

Pack-years - Current 16.9±11.5 17.8±12.6 16.1±10.3 .012

FEV₁ (L) 3.30±0.78 3.89±0.68 2.83±0.48 < .001

FEV₁ PP (%) 100±12 100±13 100±12 .77

FVC (L) 4.34±1.01 5.13±0.85 3.69±0.61 < .001

FEV₁/FVC 0.76±0.05 0.76±0.05 0.77±0.05 < .001

TLV (L) 5.4±1.2 6.1±1.2 4.7±0.8 < .001

Pi10 (mm) 3.57±0.16 3.66±0.14 3.49±0.13 < .001

Wall area percent (%) 47.25±3.36 46.96±3.42 47.50±3.29 < .001

LA (mm²) 27.38±5.64 29.76±5.79 25.40±4.66 < .001

WT (mm) 1.00±0.05 1.03±0.05 0.98±0.05 < .001

Table 5.1 - Except where indicated, data are means ± SDs. Data in parentheses are 
percentages. P values are for t test comparisons between male and female partic-
ipants. BMI = body mass index (calculated as weight in kilograms divided by height 
in meters squared), FEV₁ = forced expiratory volume in 1 second, FVC = forced vital 
capacity, LA = luminal area, Pi10 = square root of the wall area of a hypothetical 
airway with an internal perimeter of 10 mm, PP = percent predicted, TLV = total lung 
volume, WT = wall thickness. *  Individuals who never smoked were not included in 
calculating the mean pack-years. α = .0038 for significance after Bonferroni correc-
tion.

Age 45-50 50-55 55-60 60-65 65-70 70-75 75-80 80+

Male n Percentile 547 648 743 664 436 378 450 346

Pi10

10th 3.45 3.48 3.47 3.48 3.51 3.50 3.54 3.54

25th 3.52 3.55 3.56 3.56 3.59 3.59 3.62 3.64

50th 3.60 3.64 3.64 3.65 3.69 3.70 3.70 3.73

75th 3.70 3.72 3.74 3.75 3.79 3.80 3.82 3.83

90th 3.77 3.81 3.83 3.83 3.87 3.88 3.90 3.91

WT

10th 0.96 0.98 0.97 0.97 0.98 0.97 0.98 0.98

25th 0.99 1.00 1.00 1.00 1.01 1.00 1.01 1.02

50th 1.02 1.03 1.03 1.03 1.04 1.04 1.04 1.05

75th 1.05 1.05 1.06 1.06 1.07 1.07 1.07 1.08

90th 1.08 1.08 1.09 1.09 1.09 1.10 1.10 1.10

LA

10th 21.95 21.86 22.66 22.88 23.04 23.48 23.27 22.97

25th 25.03 25.02 25.90 25.87 26.47 26.68 26.58 25.87

50th 28.13 28.44 29.19 30.03 30.00 30.08 30.55 29.90

75th 31.52 32.46 33.33 33.61 34.29 34.06 34.70 34.91

90th 35.32 36.52 37.01 37.67 38.17 37.31 38.87 39.21

WAP

10th 43.24 43.12 42.87 42.22 42.34 42.67 41.87 41.87

25th 45.26 45.24 44.59 44.30 44.25 44.41 43.91 44.29

50th 47.53 47.26 46.86 46.47 46.73 46.67 46.40 46.85

75th 49.60 49.65 48.97 48.97 48.86 48.96 49.02 49.58

90th 51.58 51.82 51.49 51.17 50.99 51.00 51.23 51.95

Table 5.2 - Reference bronchial parameter percentiles split by age for men. Data are 
percentile values. LA = luminal area, Pi10 = square root of the wall area of a hypothet-
ical airway with an internal perimeter of 10 mm, WT = wall thickness.
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Age 45-50 50-55 55-60 60-65 65-70 70-75 75-80 80+

Female n Percentile 766 851 964 765 580 438 454 238

Pi10

10th 3.32 3.31 3.32 3.31 3.33 3.35 3.39 3.41

25th 3.37 3.38 3.38 3.38 3.40 3.43 3.47 3.52

50th 3.45 3.45 3.47 3.47 3.49 3.52 3.57 3.62

75th 3.52 3.53 3.56 3.56 3.59 3.61 3.66 3.71

90th 3.59 3.61 3.65 3.65 3.67 3.70 3.73 3.76

WT

10th 0.92 0.91 0.92 0.92 0.93 0.93 0.95 0.95

25th 0.94 0.94 0.94 0.94 0.95 0.96 0.97 0.98

50th 0.97 0.97 0.97 0.97 0.98 0.99 1.01 1.02

75th 1.00 1.00 1.01 1.01 1.01 1.02 1.03 1.05

90th 1.02 1.02 1.04 1.04 1.04 1.05 1.06 1.07

LA

10th 18.84 19.53 19.99 19.86 20.25 20.29 20.15 19.44

25th 20.94 21.89 22.29 22.65 23.01 22.81 22.62 22.18

50th 23.90 24.73 25.29 25.56 26.05 25.71 25.96 25.45

75th 26.93 27.90 28.30 28.80 29.29 28.93 29.36 28.51

90th 29.69 30.92 31.31 32.16 32.98 32.12 32.52 32.16

WAP

10th 44.15 43.52 43.43 43.00 42.57 42.87 43.18 43.81

25th 46.00 45.26 45.10 44.72 44.61 44.97 45.46 46.18

50th 48.05 47.46 47.19 46.71 46.82 47.05 47.49 48.01

75th 50.26 49.64 49.58 49.42 49.14 49.55 49.81 50.75

90th 52.20 51.40 51.69 51.71 51.17 51.83 51.82 52.93

Table 5.3 - Reference bronchial parameter percentiles split by age for women. Data 
are percentile values. LA = luminal area, Pi10 = square root of the wall area of a hypo-
thetical airway with an internal perimeter of 10 mm, WT = wall thickness.

Male

Age* Height Weight* BMI

β R² p-val β R² p-val β R² p-val β R² p-val

0.03 0.07 <0.001 0.08 0 0.02 0.04 0.12 <0.001 0.02 0.14 <0.001

0.01 0.03 <0.001 -0 0 0.7 0.01 0.12 <0.001 0.01 0.16 <0.001

0.68 0.02 <0.001 11.5 0.02 <0.001 -0.37 0.01 <0.001 -0.31 0.03 <0.001

-0.22 0.01 <0.001 -4.92 0.01 <0.001 0.58 0.04 <0.001 0.32 0.09 <0.001

Female

Age* Height Weight* BMI

β R² p-val β R² p-val β R² p-val β R² p-val

0.04 0.09 <0.001 -0.08 0 0.004 0.03 0.07 <0.001 0.01 0.1 <0.001

0.01 0.07 <0.001 -0.04 0 <0.001 0.01 0.09 <0.001 0.01 0.12 <0.001

0.56 0.01 <0.001 10.7 0.02 <0.001 -0.26 0 <0.001 -0.16 0.02 <0.001

-0.1 0 0.03 -6.56 0.02 <0.001 0.49 0.03 <0.001 0.2 0.07 <0.001

Table 5.4 - Univariable linear regression and correlation analysis for bronchial param-
eters with participant characteristics. β = slope, BMI = body mass index (calculated 
as weight in kilograms divided by height in meters squared), LA = luminal area, Pi10 = 
square root of the wall area of a hypothetical airway with an internal perimeter of 10 
mm, WT = wall thickness. * Per 10-unit increase.

Multivariable Analysis and Reference Bronchial Parameter Equa-
tions

The multivariable linear regression model for each bronchial parameter 
showed a good fit based on the overall F statistic (P < .001). Multivariable 
linear models for Pi10 and WT achieved an adjusted R² of 0.465 and 0.412, 
respectively, whereas those for LA and wall area percentage achieved an 
adjusted R² of 0.207 and 0.104, respectively (Table 5.5Sex was correlated with 
a change in Pi10 (β1 = 0.12; P < .001), LA (β1 = 2.38; P < .001), and WT (β1 
= 0.037; P < .001), but no evidence of a correlation with a change in wall 
area percentage was observed (β1 = 0.08; P = .41). All parameters increased 
with age except for wall area percentage, which decreased (β1 = −0.27% 
per 10 years; P < .001). Height was related to increased Pi10 and LA and 
decreased WT and wall area percentage (β1 = 0.008 mm, 20.23 mm2, −0.07 
mm, and −12.46%, respectively; P = .002 for Pi10; P < .001 for LA, WT, and wall 
area percentage). Weight correlated with increased Pi10, WT, and wall area 
percentage and decreased LA (β1 = 0.04, 0.015, 0.73, and −0.59, respec-
tively; all P < .001). Current smoking was related to increased Pi10 (β1 = 0.041; 
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P < .001), WT (β1 = 0.015; P < .001), and wall area percentage (β1 = 0.49; P < 
.001), but no evidence of a relationship with LA was observed (β1 = −0.11; P = 
.55). A history of more than 10 pack-years was related to increased Pi10, WT, 
and wall area percentage but had no evidence of an effect on LA. Based 
on feature importance analysis, it was observed that age, height, and weight 
together accounted for 80% or more of the explained variance for each 
bronchial parameter, and smoking history had an overall influence of less 
than 20% (Figure 5.3). For each bronchial parameter, the model coefficients 
were used to derive a normalized reference parameter equation, accessible 
as an online calculator at https://www.b3care.nl/bp_calc/ and in Figure S5.3 
and Appendix S5.3. 

Pi10 (mm)

R² 0.465, P <.001

WT (mm)

R² 0.412, P <.001

LA (mm²)

R² 0.207, P <.001

Wall area percent 
(%) R² 0.104, P <.001

β₁ P β₁ P β₁ P β₁ P

Sex 0.12 <.001 0.037 <.001 2.38 <.001 0.08 .41

Age* (years) 0.043 <.001 0.01 <.001 0.91 <.001 -0.27 <.001

Height (m) 0.008 .002 -0.07 <.001 20.23 <.001 -12.46 <.001

Weight* (kg) 0.04 <.001 0.015 <.001 -0.59 <.001 0.73 <.001

Current smoker 0.041 <.001 0.015 <.001 -0.11 .55 0.49 <.001

Pack-Years 1-10 0 .56 0 .75 0.09 .48 -0.04 .63

Pack-Years 10-20 0.017 <.001 0.007 <.001 0.13 .43 0.21 .045

Pack-Years 20+ 0.059 <.001 0.021 <.001 -0.12 .57 0.79 <.001

Table 5.5 - Multivariable linear regression for bronchial parameters. The adjusted R² 
values and F statistic P values are shown for the overall model. For each independent 
variable, the coefficients are shown with their corresponding P values. β = slope, LA 
= luminal area, Pi10 = square root of the wall area of a hypothetical airway with an 
internal perimeter of 10 mm, WT = wall thickness. * Per 10-unit increase.

Discussion

To determine the distribution and influencing factors of bronchial parameters 
in individuals with normal lung function, we measured the airways of 8869 
participants of the Imaging in Lifelines study. We found that male partici-
pants had thicker bronchial walls and wider bronchial lumens than female 
participants (wall thickness [WT]: 1.03 mm ± 0.05 vs 0.98 mm ± 0.05, P < .001; 
luminal area [LA]: 29.76 mm2 ± 5.79 vs 25.40 mm2 ± 4.66, P < .001), and this 
difference remained after accounting for age, height, weight, and smoking 
status. With aging, there was a small but steady increase in WT (β = 0.01 mm 

per 10 years; P < .001) and LA (β = 0.91 mm2 per 10 years; P < .001), which 
was also reflected in a higher square root of the bronchial wall area of a 
hypothetical airway with an internal perimeter of 10 mm (β = 0.043 mm per 
10 years; P < .001). Previous studies that investigated CT-derived bronchial 
parameters in a healthy group have included healthy individuals primarily as 
a control group for respiratory disease cohorts124. These studies report incon-
sistent findings regarding bronchial parameters, with some suggesting thinner 
airway walls in male participants27 and others showing thicker walls25,85,134 or 
no difference135. However, our study in a much larger cohort of 8869 individ-
uals with healthy lungs from the general population now provides evidence 
that men have higher wall thickness compared with women, even when 
accounting for age, height, weight, and smoking history. The discrepancies 
observed in previous studies may be attributed to the variation in method, 
scale, and differential impact of physical characteristics on different bron-
chial parameters124. Our analysis revealed that sex, age, height, weight, and 
smoking history explain some of the variation in wall area percentage and 
LA (R² range = 0.104–0.207; P < .001) and accounted for almost half of the 
explained variation of the WT and Pi10 distributions (R² range = 0.412–0.465; 
P < .001). Aging was related to small increases in LA and WT, resulting in 
an increased Pi10, but showed no evidence of an influence on wall area 
percentage. The increase in LA could be due to parenchymal changes of 
the aging lung, namely loss of elasticity136,137 and reduction in density138,139. This 
change in increased airspace has been noted on histology and micro-CT of 
donor lungs140. The findings are similar to a recent investigation26 of the aging 
airway morphologic structure in 431 participants who never smoked, which 
found an LA increasing with aging in male participants. Although the authors 
did not find the same association in female participants, our findings in a 
larger study sample support that age-related changes are present in both 
sexes. This result has also been observed in a past study; however, the study 
sample was primarily heavy smokers recruited for a lung cancer screening 
trial75. Moreover, we found that height and weight exerted an influence on 
bronchial parameters. Height demonstrated a positive correlation with Pi10 
and LA. Meanwhile, weight exhibited positive associations with Pi10, WT, and 
wall area percentage but showed a negative correlation with LA. The results 
reinforce the importance of considering sex, age, and height in the eval-
uation of bronchial parameters. This study had several limitations. First, the 
study sample examined in the ImaLife study represents a specific popula-
tion from the northern provinces of the Netherlands, primarily composed of 
White individuals who were taller compared with most countries. Second, 
the segmentation methods and scan protocols used may influence bron-
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chial parameters, which may have contributed to potential inconsisten-
cies in comparisons between studies. Last, the non-systematic nature of the 
image review beyond lung nodules and emphysema may have resulted in 
the retention of a small number of participants with undiagnosed or subtle 
respiratory conditions, particularly if findings at CT were not extensive. This 
factor should be considered when interpreting the findings. Bronchial param-
eters not only provide insights into airway morphologic structure in the context 
of screening and diagnosis but also have potential therapeutic applica-
tions, as shown by their capacity to gauge treatment response in respiratory 
illnesses after intervention45,141,142. Previous research also highlighted bronchial 
parameters as measures of improvement after smoking cessation in individ-
uals with chronic obstructive pulmonary disease18,143. However, confounding 
factors such as sex, age, and height have sometimes been overlooked in 
studies measuring bronchial parameters. Our findings emphasize the impor-
tance of these factors, suggesting their integration could enhance bronchial 
parameter sensitivity in clinical applications. Overall, this study examined 
the distribution of CT-derived bronchial parameters in a large healthy Dutch 
cohort. In healthy individuals, bronchial parameters differed by sex, height, 
weight, and smoking history. Male sex and increasing age were associated 
with wider lumens and thicker walls. The reference equations and percentile 
values provided in this study could be used as a benchmark for assessing the 
bronchial parameter for an individual stemming from a population similar to 
our study sample and identify deviations from normal values. Future research 
of bronchial parameters is needed in diverse populations in other countries 
as well as standardization of bronchial parameter calculation methods.



79

6

CT-derived total airway count in lung-healthy and 
unhealthy individuals from a general population:  
insights from the imaging in lifelines study
I. Dudurych • M. van Tuinen • A. Garcia-Uceda • G. Sidorenkov

M. van den Berge • M. de Bruijne • R. Vliegenthart

Submitted

CHAPTER 6



80 81

Chapter 6

6

Abstract

Purpose

Total airway count (TAC) is a CT-based metric for evaluating respiratory 
anatomy, but its association with age, sex, anthropometric factors, and 
spirometry results is unclear. We investigated these relationships in a general 
population sample comprising lung-healthy and unhealthy individuals.

Materials and Methods

We included 11,056 low-dose CT scans from the ImaLife study. Participants 
were stratified into lung-healthy/-unhealthy based on spirometry, imaging, 
and history of respiratory disease. TAC, wall area percent (WAP), luminal area 
(LA) and Pi10 were automatically calculated. We used multivariate linear 
regression and area under receiver operator characteristic curve (AUC) 
analysis. Spirometry thresholds for AUC analysis were defined as forced expir-
atory volume in the first second (FEV1)/forced vital capacity (FVC) ratio<0.7 
and/or FEV1 percent predicted<80%.

Results

Among participants, 8,561 (77%) were lung-healthy (mean age 60.4±10 years, 
44.9% men) and 2,495 (23%) were lung-unhealthy (61.7±10.4 years, 42.6% 
men). TAC averaged 172±33 in lung-healthy and 161±36 in lung-unhealthy 
individuals (p<0.001). Age, male sex, and height were associated with higher 
TAC values, explaining 19% of its variance in those with normal and 10% in 
those with impaired lung-health. The discriminatory ability of TAC for spirom-
etry outcomes (AUC 0.73 for FEV1/FVC% and 0.75 for FEV1% predicted) was 
comparable to WAP and LA. 

Conclusions

Higher age, larger height and male sex are associated with increased total 
airway count, both in individuals with normal and impaired lung health. Lower 
TAC values are associated with reduced lung function similarly to WAP and 
LA, whereas TAC is easier to obtain.

Introduction

Respiratory diseases such as chronic obstructive pulmonary disease (COPD) 
often involve airway abnormalities. Clinically, these respiratory diseases are 
characterized by lung function impairment, which for decades has been 
measured by spirometry. While invaluable towards measuring the severity of 
airflow obstruction, spirometry does not provide insights into regional airway 
anatomy and remodelling at early stages of disease. Recent research 
exploring the initiation and progression of COPD shows abnormalities and 
pruning of smaller airways, even before the onset of symptoms or airflow 
obstruction at spirometry 20,140. Given these findings, an objective assessment 
through CT imaging may enhance our understanding of early-stage airway 
changes, which are crucial for timely intervention.

Thoracic CT scans provide volumetric imaging of the lungs that enables the 
evaluation of the parenchyma and airways. The scans can be processed to 
segment the airway lumen and walls from which bronchial parameters can 
be calculated. Bronchial parameters such as luminal area (LA), wall area 
percent (WAP) and wall thickness have previously been shown to correlate 
with spirometry results, and show promise for the assessment of early disease, 
monitoring of treatment response and differentiation of disease phenotypes 
87,90,91,131. In addition to direct measurements of airway lumen and wall, other 
information can be extracted from the airway segmentations, for example 
the count of the total number of airway branches segmented – also called 
total airway count (TAC). Recent studies have linked a decline in TAC to lung 
function impairment and respiratory symptoms in smokers and COPD patients 
18 with lower values predicting development of COPD 130 and asthma severity 
144. The extent to which factors like age, sex, height, and weight impact TAC 
in the general population is yet unexplored. Since these are standard factors 
that should be taken into account for a proper interpretation of lung function 
measurements 145, we would anticipate them to also influence TAC measure-
ments derived from thoracic CT. 

Our study aims to expand current knowledge on TAC by evaluating meas-
urements in a general population, assessing its relationship with general 
characteristics, and comparing its efficacy with established CT-based bron-
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chial parameters in predicting lung function impairment. We investigate the 
relationship of TAC with age, sex, height, weight, and smoking status - both 
in those with normal and impaired lung-health. In addition, we assess the 
discriminatory ability of TAC for reduced lung function compared to estab-
lished CT-based bronchial parameters.

Methods

Study and Participants

Analysis was performed on scans from the prospective Imaging in Lifelines 
(ImaLife) study, which was approved by the local medical ethics committee, 
and registered with the Dutch Central Committee on Research Involving 
Human Subjects (https://www.toetsingonline.nl, Identifier: NL58592.042.16). 
All participants gave informed consent for participation.

ImaLife is part of Lifelines. Lifelines is a multi-disciplinary prospective popula-
tion-based cohort study examining in a unique three-generation design the 
health and health-related behaviours of 167,729 persons living in the North 
of the Netherlands. It employs a broad range of investigative procedures 
in assessing the biomedical, socio-demographic, behavioural, physical and 
psychological factors which contribute to the health and disease of the 
general population, with a special focus on multi-morbidity and complex 
genetics 120. In ImaLife, we included individuals participating in Lifelines when 
they met the following criteria: age 45 years and older and available spirom-
etry data from the second Lifelines round. These individuals were invited to 
undergo low-dose thoracic CT scanning, which was performed between May 
2017 and October 2022 in 12,041 participants. The full study design including 
population details has been previously published 32. 

Figure 6.1 - Flowchart for participant inclusion, exclusion, and group division for this 
study. Hx – History.

We split the participants into “lung-healthy” and “lung-unhealthy” subgroups. 
Individuals with imaging signs of pulmonary illness, a self-reported history of 
pulmonary disease, medication use for respiratory issues or abnormal spirom-
etry according to the lower-limit of normal for Forced Expiratory Volume in 
the first second of expiration (FEV1) percent predicted (PP) or FEV1/Forced 
Vital Capacity (FVC) were assigned to the “lung-unhealthy” group. The full 
details of criteria for study inclusion/exclusion and subgroup stratification are 
provided in Supplemental Document 6.1.

Image Acquisition and Analysis

The ImaLife scan protocol included a low-dose non-contrast volumetric CT 
scan of the thorax at full inspiration with the participants in supine position, 
using a third-generation dual-source CT scanner (SOMATOM Force, Siemens 
Healthineers, Germany). For bronchial segmentations, images were recon-
structed using Qr59 (hard-quantitative) kernel. Reconstructed voxel size was 
0.68x0.68mm and slice increment was 0.7mm.
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Lung-Healthy Lung-Unhealthy p-value

Participants 8,561 (77.4%) 2,495 (22.6%)

Age (years) 60.4±10.0 61.7±10.6 0.14
Height (m) 1.74±0.09 1.74±0.09 0.7
Weight (kg) 79.7±14.1 79.2±14.7 0.41
Smoking status†

      Never-smoker 3,560 (41.6%) 849 (34.0%)

<0.001

      Ex-Smoker 3,828 (44.7%) 1,129 (45.3%)

       Current-Smoker 1,173 (13.7%) 517 (20.7%)

Pack-Years* 11.7±10.7 14.9±12.9 <0.001
FEV₁ PP (%) 100.1±12.4 89.9±14.9 <0.001
FEV₁/FVC 0.76±0.05 0.67±0.08 <0.001
TLV (L) 5.36±1.21 5.62±1.24 <0.001
Pi10 (mm) 3.56±0.16 3.61±0.17 <0.001
WAP (%) 47.26±3.36 48.91±3.55 <0.001
LA (mm²) 27.3±5.6 25.8±5.7 <0.001
TAC (N) 172±33 161±36 <0.001

Table 6.1 - Population demographics by lung health status. FEV1 - Forced Expiratory 
Volume in the first second, FVC – Forced Expiratory Volume, FEV1 PP – FEV1 Percent 
Predicted, TLV – Total Lung Volume, Pi10 – Square root of the wall area of a hypothet-
ical airway with an internal perimeter of 10mm, WAP – Wall Area Percent, TAC – Total 
Airway Count. † p-value for overall chi-squared test for smoking status groups. * pack-
years for ever-smokers.

Scans were automatically processed to calculate TAC. The airway lumen 
was extracted using a 3D-Unet , which was refined and validated on ImaLife 
data as previously described 96,115,133. Participants with inadequate airway 
segmentation based on automated measures of airway completeness and 
visual assessment were excluded. Individual airway branches were automat-
ically identified by detecting branching points along the airway tree, simi-
larly to the previously published methods in the EXACT’09 challenge 92. TAC 
was calculated by counting all separate branches that were >2mm in length 
within an airway tree.

Figure 6.2 Rendering of a segmented airway tree. Each branch is separately indexed 
and randomly coloured. Branches of less than 2mm in length were excluded from the 
total airway count. A) Healthy man with average TAC. B) Average unhealthy man. C) 
Average healthy woman. D) Average unhealthy woman. TAC – Total airway count.

Wall area percentage (WAP) was determined by calculating the ratio of the 
wall area to the total cross-sectional area of the airway. Similarly, luminal 
area (LA) was defined as the cross-sectional area within the lumen. These 
calculations were averaged for branches within the 3rd to 6th generations 
to ensure consistency 133. Pi10, which represents a summary index of airway 
wall thickness, was determined through regression analysis. Specifically, we 
plotted the square root of the airway wall area (WA) against the internal 
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perimeter (Pi) of airway branches, spanning from 0-6th generation. This linear 
regression provided an intercept that corresponds to the square root of WA 
when Pi is 10 mm. This is referred to as Pi10 17.

Statistical Analyses

Student’s independent t-test was used to compare the group means of bron-
chial parameters by lung health status and by sex. Differences in smoking 
status between lung-healthy and was tested using the Chi-squared test. To 
assess the strength and direction of association of age, sex, height, weight, 
smoking status and smoking pack-year history with TAC we used univariable 
linear regression and calculated the slope (β), significance (p-value) and 
Coefficient of Determination (r2). Multivariate linear regression was used to 
assess the associations between independent variables and TAC. Initially, we 
selected these independent variables based on their significance in univari-
able analyses and subsequently refined the model using a forward stepwise 
approach, which eliminated nonsignificant variables (p>0.05). The r² reflects 
the proportion of variance in the dependent variable predicted from the 
independent variable. It indicates the tightness of data around the regres-
sion line; low r² suggests considerable spread in the data. The slope (β) from 
the regression, despite significant scatter, provides insight into the association 
between variables, which, even if slight, can contribute meaningfully when 
combined with other predictors in multivariate models.

We applied multivariate linear regression to elucidate the associations of age, 
sex, height, weight, pack-years, and bronchial parameters with spirometry 
outcomes, namely FEV1/FVC and FEV1 PP. These analyses were performed 
separately for the lung-healthy and unhealthy groups. Beginning with a 
forward stepwise regression model incorporating age, sex, height, weight, 
and pack-years, we established a base model for testing the associations 
with the continuous spirometry results. Subsequently, in separate models, we 
individually added each bronchial parameter—WAP, LA, Pi10, or TAC—to this 
base model to assess their additional explanatory value. We assessed the 
model explanatory value by examining the adjusted R² values and model fit 
by comparing the Bayesian Information Criterion (BIC) between the addition 
of TAC to the base model versus other bronchial parameters added to the 
base model. Significance of the overall model was evaluated by the F-sta-
tistic and associated p-value. The F-statistic determines the significance of 
the variables combined impact in explaining variance. Alpha was set to 0.05 

for significance.

To evaluate how well TAC, WAP, LA, and Pi10 discriminate between partici-
pants with or without an FEV1/FVC ratio <0.7 or FEV1 PP <80%, we evaluated 
two multivariate logistic regression models using a stratified 5-fold cross-val-
idation approach. The dataset was segmented into five equal-sized folds, 
ensuring a representative distribution of outcome classes in each with imple-
mentation of data balancing techniques. In each successive iteration, four 
folds served as the training set, while the remaining fold was used as the 
validation set. Initially, we included age, sex, height, weight, and pack-years 
in the base model, followed by the inclusion of one of the bronchial param-
eters. For each model, we calculated the area under the curve (AUC) of the 
receiver operating characteristic (ROC) plots to quantify their discriminatory 
ability. Optimal thresholds for sensitivity/specificity were obtained from the 
ROC results using Youden’s J statistic.

Lung-Healthy R² 0.187 Lung-Unhealthy R² 0.096

β₁ β₁-norm p-val β₁ β₁-norm p-val

Sex 8.42 0.031 <0.001 9.27 0.035 <0.001

Age* 10.04 0.190 <0.001 7.77 0.132 <0.001

Height 95.64 0.263 <0.001 55.67 0.141 <0.001

Weight* -2.18 -0.116 0.04 -0.07 -0.036 0.26

Pack-Years

1-10 0.63 0.002 0.42 -3.88 -0.011 0.35

10-20 2.09 0.008 0.04 -1.15 -0.005 0.62

20+ 6.77 0.022 <0.001 -0.06 -0.001 0.97

Table 6.2 - Multivariable model for total airway count (TAC) with the independent 
variables sex (0 if woman, 1 if man), age, height, weight, and pack-years (catego-
rised). β1 - variable coefficient (normalised). * - per 10-unit increase.
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Results

Participants

Of 12,041 processed scans, 985 were excluded due to inadequate segmen-
tation or missing data (Figure 6.1). From the remaining 11,056 participants 
8,561 (77%) were lung-healthy, and 2,495 (23%) lung-unhealthy. For the overall 
population, means and standard deviations for age, height and weight 
were 61.3±10.5 years, 1.74±0.09m and 79.5±14.1kg respectively (Table 6.1). 
Spirometry measures for lung-healthy and unhealthy groups were FEV1/FVC 
of 0.76±0.05 and 0.67±0.08 and FEV1 PP 100.1±12.4 (p<0.001) and 89.9±14.9 
(p<0.001) respectively. Significant differences existed between men and 
women in both lung-healthy and lung-unhealthy groups for mean age, 
height, weight, pack-years, FEV1, FVC and CT-derived total lung volume and 
bronchial parameters (p<0.001) (Table S6.1).

Participant Characteristics and TAC

Exemplary airway segmentations for male and female participants is shown 
in Figure 6.2. Mean TAC was 172±33 in the lung-healthy and 161±36 in the 
unhealthy subgroup (p<0.001). Male sex was associated with higher TAC 
values, both in lung-healthy (183±34 vs 163±30, p<0.001) and lung-unhealthy 
subjects (167±38 vs 155±31, p<0.001). In univariable analysis, higher age, 
height, and number of pack-years were associated with increased TAC 
values in lung-healthy men and women (Table S6.2). In the lung-unhealthy 
group, similar significant associations were observed for age and pack-years 
in both sexes, with larger height additionally showing a significant associa-
tion with higher TAC in women, but not in men. Multivariate analyses demon-
strated that demographic factors together explained 18.7% and 9.6% of the 
variation in TAC in lung-healthy and lung-unhealthy subjects respectively 
(Table 6.2). In both subgroups, sex, age, and height significantly contributed 
to the explained variance of TAC (p<0.001), with height being the most influ-
ential factor (norm-β1 0.263, 0.141 for lung-healthy and unhealthy individuals 
respectively). Although a higher number of pack-years was associated with 
increased TAC in lung healthy individuals, it only explained a small part

A: FEV₁ PP Prediction

Base WAP LA Pi10 TAC

Healthy

Adj-R² 0.055 0.158 0.161 0.055 0.142

ΔBIC 0 -1023.2 -1063.1 -4.2 -868.3

F-Stat 75.42 239.2 245.8 87.4 185.0

Unhealthy

Adj-R² 0.071 0.189 0.155 0.081 0.196

ΔBIC 0 -285.7 -196.5 -14.1 -295.9

F-Stat 24.2 100.3 66.4 32.2 74.3

B: FEV₁/FVC Prediction

Healthy

Adj-R² 0.140 0.225 0.214 0.141 0.196

ΔBIC 0 -935.9 -935.9 -13.5 -611.8

F-Stat 207 325.4 346.9 184 273.5

Unhealthy

Adj-R² 0.219 0.304 0.273 0.227 0.309

ΔBIC 0 -247.8 -154.8 -23.2 -254.0

F-Stat 85.2 117.7 101.4 90.8 118.8

Table 6.3 - A) Comparison of multivariable models to examine factors explaining 
variance in Forced Expiratory Volume in 1 second (FEV1) Percent Predicted (PP). B) 
Comparison of multivariable models to examine factors explaining variance in Forced 
Expiratory Volume in 1 second (FEV1) / Forced Vital Capacity (FVC). Adjusted R² indi-
cates the effectiveness of the model by quantifying the variance it explains, the 
difference in Bayesian Information Criteria (ΔBIC) assesses model fit, with lower values 
indicating a better fit. The F-statistic determines the significance of the variables 
combined impact in explaining variance, where all models in this study demonstrated 
significance with p-values <0.001. Base model: sex, age, height, weight, pack-years. 
WAP - Wall Area Percent, LA - Luminal Area, Pi10 - Square Root of the Wall Area of a 
hypothetical airway with an internal perimeter of 10mm, TAC - Total Airway Count.

 of its variance (Figure 6.3). While ex-smokers and current-smokers had slightly 
higher values of TAC in both lung-healthy and lung-unhealthy groups (Table 
S6.2) smoking status did not contribute to explained variance in the multivar-
iable models. For unhealthy participants weight and pack-years no longer 
contributed significantly to TAC’s explained variance. 
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Model FEV₁/FVC < 0.7 FEV₁ PP < 80%

AUC 95% CI Sens. Spec. AUC 95% CI Sens. Spec.

Base 0.67 [0.65-0.70] 0.58 0.69 0.63 [0.61-0.64] 0.47 0.75

TAC 0.73 [0.72-0.75] 0.64 0.72 0.75 [0.73-0.78] 0.70 0.70

WAP 0.72 [0.71-0.74] 0.67 0.67 0.74 [0.73-0.77] 0.73 0.66

LA 0.73 [0.72-0.74] 0.66 0.69 0.73 [0.72-0.75] 0.73 0.63

Pi10 0.68 [0.67-0.71] 0.65 0.63 0.64 [0.63-0.66] 0.42 0.80

All BPs 0.75 [0.74-0.76] 0.66 0.71 0.77 [0.75-0.79] 0.71 0.71

Table 6.4 - Multivariable logistic regression models for discriminating reduced spirom-
etry outcomes. Base model incorporates age, height, weight, sex and pack-years. 
AUC – receiver operator characteristic area under the curve, BPs – bronchial param-
eters, FEV1 - forced expiratory volume in the 1st second of expiration, FVC – forced 
vital capacity, FEV1 PP – FEV1 percent predicted, LA – luminal area, TAC – total airway 
count, WAP – wall area percent.

TAC and Spirometry Relationships

In the lung-healthy group, LA was most strongly associated with FEV1 PP, 
explaining 16% of the variance. Addition of LA to the model demonstrated 
a substantial improvement in fit compared to the base model (decrease in 
Bayesian Information Criterion [ΔBIC], -1063), surpassing the improvement 
seen with the addition of TAC to the base model (ΔBIC, -868) (Table 6.3A). The 
strongest association for FEV1/FVC in the lung-healthy group was seen with 
WAP (R² = 0.225). In the unhealthy subgroup, TAC has a strong association 
with FEV1 PP, explaining 19% of the variance, and the greatest association to 
FEV1/FVC ratio among the bronchial parameters, explaining 31% of the vari-
ance (Table 6.3B). In the lung-unhealthy subgroup, TAC was more strongly 
associated to FEV1/FVC than both Luminal Area (LA) and Wall Area Percent 
(WAP). A TAC increase of 100 was associated with absolute increases in FEV1 
PP of 12% in the lung-healthy subgroup and 15% in the unhealthy subgroup 
(p<0.001), and 0.04-point and 0.08-point increase in the FEV1/FVC ratio, 
respectively (p<0.001) (Table S6.3).

Figure 6.3 - Feature importance of each independent variable in contributing to the 
explained variance of TAC in the lung-healthy group.

In ROC analysis, models including WAP, LA, or TAC had better discriminatory 
ability for abnormal spirometry result than the base model and Pi10 model 
(Figure 6.4). The model incorporating TAC achieved an AUC of 0.73 (95% CI 
[0.72-0.75], sensitivity=0.64, specificity=0.72) for reduced FEV1/FVC, compared 
to AUC of 0.67 for the base model (95% CI [0.66-0.70], sensitivity=0.58, speci-
ficity=0.69) (Table 6.4). The model that included all bronchial parameters had 
AUC of 0.75 (95% CI [0.74-0.76]). For reduced FEV1 PP, the TAC model showed 
similar discriminatory performance with an AUC of 0.75 (95% CI [0.73-0.78]), 
again higher than the base model (AUC 0.63, 95% CI [0.61-0.64]) (Figure 6.4A). 
For reduced FEV1 PP, all models except base and Pi10 had higher sensitivity 
(range, 0.70-0.73) than for FEV1/FVC prediction, at comparable specificity 
(range, 0.63-0.80).
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Discussion

This study investigates automatic Total Airway Count (TAC) from low-dose 
chest CT scans and demonstrates how TAC correlates with other bronchial 
parameters and lung function impairment. We demonstrate that age, 
weight, pack-years and sex are factors that affect TAC measures in the 
general population, and should be taken into account for proper interpre-
tation, similar to other, established, lung function measurements. Our find-
ings demonstrate the clinical relevance of chest CT-based TAC as lower TAC 
values were associated with reduced lung function. TAC outperformed Pi10 
and showed similar discriminative ability compared to other CT-based bron-
chial parameters, that are more difficult to measure, such as luminal area 
(LA) and wall area percent (WAP). 

Figure 6.4 - Receiver Operating Characteristic (ROC) curves for spirometry threshold 
prediction using multivariable logistic regression with calculated area under the curve 
(AUC) for the base model (age, height, weight, sex, pack-years), base model with all 
bronchial parameters (All) and for the base model with the addition of each bron-
chial parameter separately, namely Pi10, wall area percent (WAP), luminal area (LA) 
and total airway count (TAC). A) ROC for predicting an FEV1 PP of less than 80%. B) 
ROC for predicting an FEV1/FVC of less than 0.7.

TAC has been studied in several smaller cohorts 25,26,146. Bhatt et al. observed 
higher TAC in men compared to women within those groups 25 similarly as 
observed in our study. A difference in TAC by sex was also observed in 431 
healthy never-smokers by Terada et al. 26. The actual TAC values diverge 
among studies, with an overall mean TAC of 264±128 in the former and 

190-210 in the latter study, compared to 172±33 in ours. This difference could 
be due to several factors. Different scanning protocols, inspiration levels, and 
software tools can yield varying TAC even on identical scans or with identical 
patients 146. As the method to obtain TAC has influence over the final value, 
clear and standardized methodology is essential when reporting TAC. Studies 
using AI models for TAC need to reference the training and validation studies 
or provide comprehensive model cards. 

Despite the differences in absolute TAC values between studies, there is 
consistency in the relationship between TAC and spirometry results. We found 
that both lung-healthy and lung-unhealthy groups exhibited increased FEV1/
FVC ratios with higher TAC (0.04 per 100 TAC increase for lung-healthy and 
0.08 per 100 TAC increase for lung-unhealthy). These increments are in line 
with findings from the COPDGene and CanCOLD studies, which showed 
a 0.025-0.028 increase in FEV1/FVC and a similar increase in ever-smokers, 
respectively 25,147. Furthermore, in our study we demonstrated similar positive 
increments in FEV1 PP related to higher TAC in both lung-healthy (12.2% per 
100 TAC increase) and unhealthy groups (15.0% per 100 TAC increase).

TAC, added to the base model, was strongly associated with spirometry results 
in the lung-unhealthy subgroup, similar to WAP, and better than LA and Pi10 
(providing 30.9% explained variance vs 30.4%, 27.3%, 22.7% respectively). In 
the lung-healthy group, TAC outperformed Pi10 but WAP and LA provided 
slightly better insights in this case (explained variance of 19.6% vs 14.1%, 22.5%, 
21.4% respectively). In addition, among bronchial parameters, TAC provided 
discriminative ability for reduced FEV1/FVC and FEV1 PP (AUC 0.73 and 0.75 
respectively), similar to WAP (AUC of 0.72 and 0.74 respectively), and better 
than LA and Pi10. The increased association of TAC with spirometry values 
in the unhealthy group likely stems from disease-related variation, such as 
emphysema, fibrosis, and mucus build-up 148, which causes both genuine 
airway loss and complexities in segmentation. For example, a decrease in 
LA is associated with reduced TAC in COPD patients 90. This decrease signi-
fies a narrower airway, the typical segmentation target, making accurate 
CT-based evaluation of small airways more difficult 149. Notably, a decrease 
in detectable airway branches may occur without actual physical loss. TAC 
reflects the number of branches segmentable by CT, not their true quantity 
150. Additionally, TAC tends to rise with age in healthy individuals, possibly due 
to increasing LA and other age-related changes in bronchi 26,135–137. Interest-
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ingly, high pack-years slightly elevated TAC in lung-healthy people, a trend 
also noted in smokers from the Bhatt et al. study 25. Smoking-related damage, 
initially to the smallest airways not visible on CT, may cause airway enlarge-
ments that become detectable, offering a potential explanation for this rise 
in TAC 151. Future research should further illuminate these phenomena through 
longitudinal TAC analysis.

Using CT-based measures of the airways for diagnosis or monitoring of respira-
tory health has been of interest for several years. For the most part, this has 
involved manual or semi-automated measures of the airway lumen and 
occasionally the airway wall, from which bronchial parameters such as WAP, 
LA, and Pi10 can be calculated 124. This process demands comprehensive 
segmentation of the airway tree, with precise demarcation of the airway 
lumen, wall, and adjacent parenchyma. Low-dose scans complicate matters 
as noise and partial volume effects can obscure the interfaces in smaller 
branches. TAC sidesteps the need for detailed measurements of lumen and 
wall, requiring only an overall segmentation of the airway tree. TAC offers 
ease of calculation, particularly when traditional measurement methods are 
not suited for specific datasets or protocols, leading to imprecise lumen and 
wall definitions. Additionally, TAC values can be readily visualized with airway 
tree renderings, providing a clearer representation compared to subtle vari-
ations in airway dimensions. Yet, the utility of TAC is hindered by its varying 
measurement methods across studies, influenced by differences in scanning 
and segmentation techniques. Moreover, TAC visualizations, while clear, do 
not readily explain the origins of airway loss. To overcome these limitations, 
a unified methodology across studies should be encouraged, which might 
encompass the use of an imaging phantom designed explicitly for airway 
counting methods. Establishing standardized protocols would enhance TAC’s 
comparability and interpretability, thereby strengthening its role in respiratory 
health assessment.

This study has several strengths. Encompassing a large and representative 
sample size of 11,055 participants, it offers an extensive analysis of bronchial 
parameters within the lung-healthy and lung-unhealthy general population. 
The inclusion of a large sample, including 77% healthy individuals, allows for 
a detailed examination of TAC, with adjustments for potential confounders 
such as sex, age, height, weight, and pack years. This adjustment enables the 
assessment of the pure role of TAC and a relative exploratory values compar-

ison between WAP, LA, Pi, and TAC in explaining spirometry outcomes. 
Automated image analysis techniques were adopted in our methodology 
to ensure efficient measurements across the substantial study sample. This 
approach minimizes potential variance and bias that could originate from 
manual reader measurements.

There are a few limitations for consideration regarding the findings of this 
study. Firstly, the generalizability of the findings may be limited to populations 
like those included in the ImaLife cohort (i.e., Caucasian individuals from the 
North of the Netherlands) for example the Dutch population is the tallest in 
the world 152 and our findings strongly link height with TAC. Studies focusing on 
heterogenous population cohorts and patient groups would be beneficial 
in exploring potential differences and similarities in TAC. Second, the airway 
segmentation method does not guarantee complete airway segmenta-
tion, as some peripheral branches may be discarded during measurement 
leading to lower total airway counts than reported in other studies. For cases 
with an occluded lumen, this could result in exclusion of segmented airways 
beyond the blockage. 

In conclusion, in this general population sample, higher age, larger height and 
male sex are associated with increased TAC, both in individuals with normal 
and impaired lung health. Lower TAC values are associated with reduced 
lung function similarly to WAP and LA, whereas TAC is easier to obtain.
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Abstract

Purpose

Previous research has demonstrated improvements in CT-derived bronchial 
parameters in the first years after smoking cessation. This study investigates 
the association between longer smoking cessation duration and bronchial 
parameters in lung-healthy and lung-unhealthy ex-smokers from the general 
population.

Materials and Methods

We conducted a cross-sectional analysis using low-dose CT scans of 
ex-smokers with at least 10 pack-years from the Imaging in Lifelines study. 
We divided them into lung-healthy and lung-unhealthy based on spirom-
etry, self-reported diagnosis or imaging signs of respiratory disease. Bron-
chial parameters Pi10, wall thickness, luminal area and wall area percent 
(WAP) were obtained using a previously validated method. Multivariable 
linear regression adjusted for sex, age, height, weight, and pack-years was 
performed to assess the independent association of smoking cessation dura-
tion with bronchial parameters.

Results

The study included 1,869 ex-smokers; 1,421 (76%) were classified as lung-
healthy (58% men, mean age 64.2±9.8 years, pack-years 16.5 [12.5-23.3], 
smoking cessation duration 20.0 [14.0-29.0] years) and 448 (24%) as unhealthy 
(56% men, mean age 66.1±10.5 years, pack-years 18.2 [13.4-25.2], smoking 
cessation duration 20.0 [13.8-29.0] years). Longer smoking cessation dura-
tion was associated with a decrease in WAP for the lung-unhealthy group 
(-0.528% per 10 years, p=0.005). No significant associations were observed 
with other bronchial parameters or in the healthy group.

Conclusions

In individuals with respiratory conditions, longer smoking cessation duration is 
related to a decrease in wall area percent of the bronchial walls. The results 
suggest the potential for improvements in airway health when people quit 
smoking, warranting further investigation with longitudinal studies.

Introduction

Smoking is widely recognized as the primary cause of chronic obstructive 
pulmonary disease (COPD), responsible for over 80% of all cases 153. Prolonged 
exposure to tobacco smoke leads to persistent irritation and inflammation of 
the airways, resulting in progressive damage to lung tissue and constriction 
of the airway passages 154. The risk of developing COPD is closely associated 
with the duration and intensity of smoking, with heavier smokers more likely to 
develop severe forms of COPD 155. A higher smoking burden results in airway 
changes, noted on micro-CT and histological analysis of airway remodelling 
20. These airway changes have been found to contribute to worsening symp-
toms and exacerbations in COPD 147. 

Computed tomography (CT) can be used to measure the airways and 
calculate bronchial parameters to summarise their condition. Deviations 
from normal values in CT-derived bronchial parameters are often observed 
in COPD, and correlate with airway obstruction and impaired lung function 
87. Such airway changes can be airway wall thickening and lumen narrowing, 
reflected by increased wall area percent (WAP) and decreased luminal area 
(LA) as bronchial parameters in CT. This deviation from normal is also seen in 
smokers at risk of developing respiratory illness, before the onset of spirome-
try-evident COPD 24. 

In COPD, smoking cessation stands out as an effective intervention to slow 
down the progression of COPD and improve overall lung health 156. Quitting 
smoking has been shown to significantly reduce symptoms, decrease the 
frequency and severity of exacerbations, and enhance lung function 157. 
Notably, ex-smokers experience a slower decline in lung function compared 
to those who continue smoking. Recent studies investigating changes in 
airway morphology after smoking cessation show measurable improvements 
already in a time-span of 1-3 years 18,158, but changes to CT based airway 
measurements over a longer time after stopping smoking are currently unex-
plored. Leveraging data from our population-based study, we can capture 
a valuable cross-sectional snapshot that allows for the identification of asso-
ciations between smoking cessation duration and CT-derived bronchial 
parameters. 

Our study aims to address the cross-sectional relationship between smoking 
cessation duration and CT-derived bronchial parameters in ex-smokers from 
the general population with and without respiratory diseases. We hypoth-
esize that over longer time after smoking cessation, bronchial parameters 
become less abnormal. By investigating these questions, we hope to gain a 
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better understanding of the long-term benefits of quitting smoking in relation 
to airway morphology.

Figure 7.1 - Participant inclusion flowchart for the study. Dx – diagnosis. Participants in 
the unhealthy group had one or more of self-reported respiratory diagnosis, abnormal 
spirometry, or imaging signs of respiratory illness.

Healthy Unhealthy p-value

Participants 1,421 (76%) 448 (24%)

Sex (M/F) 822/599 250/198

Age (years) 64.3±9.9 66.1±10.5 <0.001

Height (m) 1.75±0.09 1.75±0.09 0.57

Weight (kg) 83.6±13.7 81.6±13.6 0.008

Pack-Years 16.5 [12.5-23.3] 18.2 [13.4-25.2] 0.023

SCD (years) 20.0 [14.0-29.0] 20.0 [13.8-29.0] 0.76

FEV₁ PP (%) 99.0±12.4 88.4±14.3 <0.001

FEV₁/FVC 0.75±0.05 0.67±0.09 <0.001

TLV (L) 5.57±1.19 5.74±1.2 0.009

Pi10 3.63±0.16 3.67±0.17 <0.001

WT (mm) 0.99±0.05 1.01±0.06 <0.001

LA (mm²) 23.7±4.7 22.5±4.6 <0.001

WAP (%) 49.8±3.3 51.3±3.4 <0.001

Table 7.1 - Population demographics split by health status. SCD – Smoking Cessation 
Duration, FEV₁ - Forced Expiratory Volume in the first second, FVC – Forced Expiratory 
Volume, FEV₁ PP – FEV₁ Percent Predicted, TLV – Total Lung Volume, Pi10 – Square root 
of the wall area of a hypothetical airway with an internal perimeter of 10mm, WT – 
Wall Thickness, LA – Luminal Area, WAP – Wall Area Percent.

Methods

Study and Participants

Participants were included from the Imaging in Lifelines (ImaLife) study, which 
was approved by the local medical ethics committee, and is registered 
with the Dutch Central Committee on Research Involving Human Subjects 
(https://www.toetsingonline.nl, Identifier: NL58592.042.16). Informed consent 
was obtained from all participants.

The ImaLife study is a part of Lifelines. Lifelines is a multi-disciplinary prospec-
tive population-based cohort study examining in a unique three-generation 
design the health and health-related behaviours of 167,729 persons living in 
the North of the Netherlands. It employs a broad range of investigative proce-
dures in assessing the biomedical, socio-demographic, behavioural, physical 
and psychological factors which contribute to the health and disease of the 
general population, with a special focus on multi-morbidity and complex 
genetics. 120. 

In ImaLife, participants aged 45 years and older who had completed a lung 
function test during the second round Lifelines assessment were invited to 
undergo low-dose thoracic CT scanning between May 2017 and October 
2022. The complete study design and relevant population details have 
been previously published 32. For this sub-study we included ex-smokers with 
a smoking history of at least 10 pack-years. The 10 pack-year cut-off aligns 
with epidemiological studies like COPDGene, DLCST and MESA, facilitating 
comparison of findings 98,159,160. All ImaLife individuals had undergone spirom-
etry, and spirometry results were compared against the lower-limit of normal 
for Forced Expiratory Volume in the first second of expiration (FEV1) percent 
predicted or FEV1/Forced Vital Capacity (FVC). Ex-smoking status was deter-
mined from self-reported smoking questionnaires completed closest to the 
CT scan (on average 2 years prior to CT). The time difference between ques-
tionnaire and CT scan results in our dataset consisting of ex-smokers with at 
least two years of smoking cessation. Participants having scans with inad-
equate airway segmentation or with incomplete data were excluded. The 
participants were split into lung-healthy and lung-unhealthy groups, based 
on self-reported history of pulmonary disease, medication use for respira-
tory issues and/or abnormal spirometry and/or presence of imaging signs 
of potential respiratory illness. Spirometry for pulmonary function testing 
was performed in adherence with American Thoracic Society guidelines, 
employing the Wellch Allyn SpiroPerfect apparatus (Wellch Allyn version 
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1.6.0.489, a computer-based SpiroPerfect™ system coupled with CardioPer-
fect® Workstation software)161. The duration of smoking cessation was calcu-
lated as the time in years between the age at which they quit smoking, and 
the age at which the scan was obtained. Detailed inclusion, exclusion criteria 
and health status assignment are provided in Supplementary Document 7.1.

Figure 7.2 - A) Rendering of an airway segmentation from a 60 y/o lung-healthy male 
participant. B) Example measurements of lumen radius (blue dashed line) and total 
radius (red dashed line). C) Graph visualising the calculation of Pi10 for a participant. 
For all branch measurements between generation 0-6 the square root of the wall 
area (SRWA) is plotted against the internal perimeter, and linear regression performed. 
Then, the SRWA is identified at a point where the internal perimeter is 10mm.

Image Acquisition

Each participant received a chest CT scan using a low-dose non-contrast 
volumetric scan protocol, using a third-generation dual-source CT scanner 
(SOMATOM Force, Siemens Healthineers, Germany). The scans were recon-
structed using a kernel (Qr59) designed for quantitative analysis, with a slice 
thickness of 1mm and a slice increment of 0.7mm.

Outcomes Definition

The primary outcomes of interest in this study were CT-derived bronchial 

parameters. The bronchial parameters were calculated through auto-
mated processing of the scans. Initially, a 3D-Unet was used to extract the 
airway lumen 96. Then, an optimal-surface graph-cut method was employed 
to segment and refine the airway wall 115. The reliability of this pipeline was 
previously validated on a subset of the ImaLife dataset, demonstrating good 
reproducibility 133.

Airway measurements were taken at intervals of 0.5mm along the centreline 
of the airway segmentation. The average measurements per branch were 
used to determine the lumen radius (LR) and total radius (TR). LR and TR were 
then utilized to calculate additional parameters:

1.	 Luminal area (LA): π(LR)² 
2.	 Wall Thickness (WT): TR – LR
3.	 Wall Area Percent (WAP):  [(TA – LA)/TA]*100, where TA is total 

area, calculated as π(TR)²
4.	 The square root of the wall area for a hypothetical airway with an 

internal perimeter of 10mm (Pi10) was calculated using airways 
from generation 0 (trachea)-6. The 6th generation was chosen as 
a threshold based on the robustness of airway measurements 133. 
The square root of the wall area was plotted against the internal 
perimeter (Pi) per branch and a robust regression line calculated 
17. Pi10 was measured at the intercept for a Pi of 10mm. 

LA, WT and WAP were averaged across airway generations 3-6 10.

Statistical Analyses

Independent t-testing was performed to discern differences in demographic 
and bronchial parameter group means by health status. The Wilcoxon 
rank-sum test was used to compare differences for pack-years and smoking 
cessation duration. Univariable linear regression was used to test the asso-
ciation between demographic variables and bronchial parameters. The 
variables significantly associated with bronchial parameters were selected 
for multivariate modelling. The multivariable linear regression models utilized 
a forward stepwise approach, incorporating sex, age, height, weight, and 
pack-years. The inclusion of smoking cessation duration as final variable in 
the model provided a measure of its contribution to the variance explained 
in bronchial parameters; this was quantified through changes in the model’s 
adjusted-R². Bayesian Information Criterion (BIC) was used to evaluate the fit 
of each model. Models were built separately for the lung healthy and lung 
unhealthy groups. Marginal effects plots were generated for all models by 
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fixing the variables sex, age, height, weight and pack-years to their mean 
value, then plotting the effect of the bronchial parameter of interest on the 
fitted model. For each model, residual plots were made by plotting the differ-
ences between observed values and predicted values. The significance 
of variables in the model was gauged using a standard significance level 
(α<0.05).

Multivariate Regression Models

Healthy

Pi10 WT LA WAP

Adj R² 0.48 0.416 0.163 0.069

ΔR² 0.001 0.001 0.002 -0.001

ΔBIC 1.00 0.92 -0.25 1.27

β₁ -0.004 -0.003 -0.031 -0.093

β₁ CI [-0.01, 0.00] [-0.01, 0.00] [-0.32, 0.26] [-0.31, 0.12]

p 0.30 0.05 0.84 0.39

Unhealthy

Pi10 WT LA WAP

Adj R² 0.482 0.384 0.234 0.110

ΔR² 0.001 0.001 0.003 0.014

ΔBIC 1.01 0.93 -0.28 -5.89

β₁ -0.007 -0.003 0.36 -0.528

β₁ CI [-0.02, 0.01] [-0.01, 0.00] [-0.11, 0.83] [-0.90, -0.16]

p 0.32 0.30 0.14 0.005

Table 7.2 - Differences in multivariable linear regression models with the addition of 
smoking cessation duration for the prediction of bronchial parameters and spirometry 
measurements. Model differences expressed as change in Adjusted R² (ΔR²), Bayesian 
Information Criterion (ΔBIC). Strength of association and significance shown by β1 - 
Smoking cessation duration coefficient (per 10 years) and corresponding p-value (p). 
Pi10 – Square root of the wall area of a hypothetical airway with an internal perimeter 
of 10mm, WT – Wall Thickness, LA – Luminal Area, WAP – Wall Area Percent.

Results

Participants and Image Analysis

Of 4,382 ex-smokers in ImaLife, 2,693 participants were excluded due to inad-
equate segmentation results (180, 4%) or a pack-year history below 10 (2,513, 
57%) (Figure 7.1). An example of airway lumen segmentation is visualised in 
Figure 7.2. Of the 1,869 included ex-smokers, 1,421 (76%) were assigned to 

the healthy group and 448 (24%) were assigned to the unhealthy group due 
to the presence of one or more of self-reported history of respiratory disease 
(N=242), abnormal spirometry (N=233) or imaging signs of respiratory illness 
(N=109).

Population Demographics

The demographic characteristics of our study population (1,869 participants) 
are presented in Table 7.1. The study population comprised 1072 (57.4%) men 
and 797 (42.6%) women. The mean age was 64.3±9.9 years for lung-healthy 
and 66.1±10.5 years for unhealthy participants. The median and interquar-
tile range (IQR) for pack-years was 16.5 [12.5-23.3] and 18.2 [13.4-25.3] for 
healthy and unhealthy groups respectively. The median and IQR for smoking 
cessation duration was 20.0 [14.0-29.0] and 20.0 [13.8-29.0] years for the 
healthy and unhealthy groups respectively. Weight, lung function measures 
and bronchial parameters differed significantly between the lung-healthy 
and unhealthy groups.

Figure 7.3 - Marginal effect plots for Pi10, Wall Thickness (WT), Luminal Area (LA) and 
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Wall Area Percent (WAP) with respect to an increasing duration of smoking cessation. 
In this plot, the independent variables of sex, age, height, weight, and pack-years 
were fixed at their mean for each fitted multivariable model, allowing to isolate the 
relationship of smoking cessation duration to each bronchial parameter. Red line 
– lung-unhealthy cohort, blue line – lung-healthy cohort. Shaded area – 95% confi-
dence intervals.

Smoking Cessation Duration and Bronchial Parameters

In both groups, univariable linear regression models showed a modest but 
significant association between smoking cessation duration and all bronchial 
parameters (Figure S7.2). In general, longer smoking cessation duration was 
related to higher WT, Pi10 and LA. Conversely, there was an inverse associa-
tion of smoking cessation duration with WAP that was stronger in the lung-un-
healthy group (β1 -0.66% per year, r² 0.04, p<0.001) compared to the lung-
healthy group (β1 -0.19% per year, r² 0.0, p=0.028) 

In multivariable regression models, the duration of smoking cessation was 
found to have a varied association with bronchial parameters in the lung-
healthy and lung-unhealthy groups. Overall, there was no significant asso-
ciation between smoking cessation duration and bronchial parameters in 
the lung-healthy group (Table 7.2). For the lung-unhealthy group, WAP was 
significantly lower for those with longer smoking cessation duration (ΔR² 0.014, 
β1 -0.53% per year, p=0.005), while there were no significant associations for 
other bronchial parameters (Figure 7.3). Residual plots for each bronchial 
parameter demonstrated the model’s goodness-of-fit. The plots show resid-
uals scattered randomly around the horizontal zero line without any discern-
ible pattern, suggesting that the models are appropriate. Additionally, the 
lack of fanning or patterning in the residual points indicates constant residual 
variance (Supplemental Figure 7.1).

Discussion

In this cross-sectional study we addressed the association between smoking 
cessation duration and CT-derived bronchial parameters in lung-healthy 
and unhealthy individuals from a general population. Our findings suggest a 
dynamic nature of airway morphology in response to smoking cessation over 
time. In both groups, univariable linear regression models showed modest but 
significant associations between smoking cessation duration and all bron-
chial parameters (wall thickness, lumen area, Pi10 and wall area percent). 
In multivariable models adjusted for age, height, weight, sex and pack-year 
history, only the association of smoking cessation duration with wall area 

percent in the lung-unhealthy remained significant; wall area percent was 
lower with longer smoking cessation duration, towards the values present in 
the lung-healthy group. In the lung-healthy cohort, no such trend was visible, 
with bronchial parameters closer to those that have been reported in never 
smokers162. These findings add insight into the potential for airway remodelling 
in response to time since smoking cessation and highlight differences in the 
potential sensitivity to change for the evaluated bronchial parameters.

Previous research has shown differences in bronchial parameters in the 
short-term after smoking cessation. Wyszkiewicz et al. demonstrated in 90 
ex-smokers that at a repeat CT scan after 3 years, ex-smokers had signifi-
cantly decreased WAP and increased LA compared to their initial scan 18. 
Similarly, at a repeat CT scan at 2 years of follow-up, 48 ex-smokers had a 
decrease in WAP compared to persisting smokers 163. In a 4-year longitudinal 
study 31 recent quitters were compared to 405 continuing smokers, and 
past smokers who had already stopped smoking longer ago. Recent-quitters 
demonstrated a decrease in WAP and increase in LA that trended towards 
the measurements from the ex-smokers who had stopped for a longer time; 
the latter showed much less changes in bronchial parameters. While Li et 
al observed a steady state of bronchial parameters in ex-smokers who quit 
longer ago where there was no significant difference in WAP and luminal 
diameter in longer-term ex-smokers after a one-year follow-up period 46, our 
findings suggest a different trend. Our analysis indicates that the decrease in 
WAP not only persists but continues to improve with extended smoking cessa-
tion beyond the one-year mark. Analysis of current and ex-smokers in the 
COPDGene study showed a significant decrease in Pi10 only for those individ-
uals who quit smoking after their first visit, i.e. within 5 years 87. Taken together, 
these studies demonstrate measurable changes in airway morphology in the 
short-term after smoking cessation, however it is unclear from those results 
whether positive changes continue for many years after smoking cessation. 
As participant characteristics like age, sex, height, and weight could be 
covariates affecting the bronchial parameter measurement, accounting for 
these variables in the analysis is also of importance 162, as we noted in our 
univariable and multivariable regression models.

While previous studies have highlighted the benefits of smoking cessation by 
demonstrating immediate improvements in airway morphology as measured 
on CT, our study contributes by providing evidence for continued improve-
ment in airway morphology over decades for ex-smokers, particularly evident 
in the lung-unhealthy group, with a gradual decrease in WAP towards the 
values in the healthy ex-smoker group. Contrarily, surprising results from 
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univariable analyses showed an increase in WT and Pi10 with longer smoking 
cessation duration, which may be attributed to the effects of ageing on 
airway wall and luminal areas 26. When accounting for this in the multivari-
able models including age, sex and smoking pack-years, we no longer found 
significant changes in WT or Pi10. This suggests that the findings from univar-
iable models are likely influenced by age amongst other factors, as longer 
duration of smoking cessation relate to older age. There was a consistent 
association showing that those with longer smoking cessation duration had 
lower WAP in both univariate and multivariate models, indicating that WAP is 
less dependent on age compared to wall thickness, luminal area, or Pi10. This 
may be due to the way WAP responds to changes in the airway; when both 
the airway lumen and wall increase at a steady rate (as may be observed 
with ageing) WAP does not change much (Supplemental Media 1). In cases 
where there is an imbalance to airway remodelling, the ratio at which airway 
wall and lumen change is mismatched and so WAP changes too (Supple-
mental Media 2). Due to this, WAP appears to be more sensitive as a bron-
chial parameter in comparison to WT, Pi10 or LA alone, and in addition has 
the benefit of being ubiquitous in this research field with the ability to differ-
entiate between disease groups across various studies 124. 

The decrease in WAP with increasing smoking cessation duration was not 
observed in the lung-healthy population. This could be in part due to the lung-
healthy group having a healthier starting point with more normal airways, 
and so less room for improvement. The lung-unhealthy cohort may also be 
more predisposed to airway changes brought on by cigarette exposure, and 
so they could both be more likely to be ill, and more responsive to smoking 
cessation.

This study has several key strengths. Firstly, it utilises a large, well-established 
general population sample derived from the Imaging in Lifelines cohort, 
adding to the generalizability of the findings. This study includes both lung-
healthy and unhealthy individuals allowing for comparisons between these 
groups. The automated and validated approach to bronchial parameter 
measurement that we used minimizes the potential bias that could stem from 
semi-automated and manual measurement.

There are some limitations regarding the findings within this study. Firstly, this 
study is a cross-sectional analysis of the general population, and we did 
not observe the values of bronchial parameters in the same individual over 
time, therefore, future long-term longitudinal studies would strengthen the 
confidence in the observations found here. Second, the generalizability of 
the findings may be limited to populations like those included in the ImaLife 

cohort (i.e., predominantly White individuals from the North of Netherlands), 
exploration of this subject in other diverse populations would be beneficial in 
exploring potential differences and similarities in airway morphology changes 
with increased duration of smoking cessation. Further, due to the time gap 
between the patient questionnaire determining smoking status and the scan 
acquisition date, we do not capture the early airway changes that happen 
in the first 2 years after smoking cessation in this data. 

In conclusion, this study reinforces the evidence supporting the extensive 
advantages tied to prolonged smoking cessation among individuals with 
compromised lung health. While there were no significant associations with 
bronchial parameters and time since smoking cessation in the lung-healthy 
group, in lung-unhealthy ex-smokers the duration of smoking cessation 
was related to a decrease in wall area percent of the bronchial walls after 
adjusting for factors like age and height. The results suggest the potential 
for improvements in airway health with longer smoking cessation, warranting 
further investigation with longitudinal studies. Our results support the need 
for interventions aimed at promoting smoking cessation for long-term public 
health improvement.
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Abstract

Background Lung hyperinflation, a key contributor to dyspnoea in Chronic 
Obstructive Pulmonary Disease (COPD), can be quantified via volumetric 
chest Computed Tomography (CT) analysis. However, the absence of refer-
ence values poses a challenge. Establishing reference equations for lobar 
volumes and total lung volume (TLV) can aid in evaluating lobar hyperinfla-
tion, especially for targeted lung volume reduction therapies.

Methods The Imaging in Lifelines study (ImaLife) comprises 11,729 partici-
pants aged 45 and above with analysed inspiratory low-dose thoracic CT 
scans. Lung and lobar volumes were measured using an automatic AI-based 
segmentation algorithm (LungSeg). Participants were excluded if they had 
self-reported COPD/asthma, lung disease on CT, airflow obstruction on lung 
function testing, were currently smoking, aged over 80 years, or had height 
outside the 99% confidence interval. Reference equations for TLV and lobar 
volumes were determined using linear regression considering age and height, 
stratified by sex.

Results The study included 7,306 lung-healthy participants, 97.5% Caucasian, 
43.6% men, with mean age of 60.3±9.5 years. Lung and lobar volumes gener-
ally increased with age and height. Men consistently had higher volumes 
than women when adjusted for height. R2 values ranged from 7.8% to 19.9%. 
In smokers and those with airway obstruction, volumes were larger than in 
lung-healthy groups, with the largest increases measured in the upper lobes. 

Conclusion The established reference equations for CT-derived TLV and lobar 
volumes provide a standardized interpretation for individuals aged 45 to 80 
of Northern European descent.

Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a debilitating condition 
characterized by inability to effectively exhale. This can result in a state of 
hyperinflation where more air is retained in the lungs compared to individuals 
without disease. In clinical practice, body plethysmography is used to quan-
tify the severity of total hyperinflation through the measurement of static 
lung volumes, especially total lung capacity (TLC) and residual volume (RV). 
To aid the interpretation of these measurements, the absolute volumes are 
standardized using reference values that are based on individuals without 
lung disease and are similar in terms of height, age, and sex, the most recent 
being established by the Global Lung Initiative (GLI)164,165.

Accurate assessment of lung volumes is crucial to select appropriate patients 
for interventions targeting hyperinflation like endobronchial valve (EBV) treat-
ment. This treatment aims to reduce lung volume by inducing a lobar atelec-
tasis. Selecting the correct target lobe is essential because an inaccurate 
selection may exacerbate the patient’s condition rather than providing 
relief from symptoms. Generally, the lobe of interest is the one most severely 
affected by emphysematous destruction which therefore contributes little to 
gas exchange166. Additional considerations include fissure completeness to 
prevent collateral ventilation and balancing the target lobe volume with the 
ipsilateral lobar volume(s)167. For these reasons, Computed Tomography (CT) 
scanning and quantitative CT analysis by lobar segmentation are essential for 
patient selection for EBV treatment, as no other modality can provide accu-
rate lobar-based information. However, unlike plethysmography-derived 
volumes, standardized reference values for lobar volumes have not been 
universally established. Only one study has derived such equations, albeit 
in a relatively small cohort168. This kind of information could be valuable for 
assessing the feasibility of EBV treatment, determining, for example, whether 
hyperinflation is confined to a specific lobe.

Several studies have demonstrated that lung volumes can be established by 
CT, with strong correlation to their plethysmography counterparts130,169–175. We 
will refer to the CT-derived equivalent of TLC as total lung volume (TLV). One 
study highlighted that the repeatability of CT-derived volumes surpasses that 
of plethysmography-derived volumes173. We have recently demonstrated 
that lung volumes compare well to plethysmography counterparts in COPD 
patients as well, especially when spirometry-gating is used176, highlighting the 
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potential utility in EBV treatment assessment. Relying on GLI predicted refer-
ence values for TLC is inadequate as the GLI equations significantly overesti-
mate actual TLV values in a lung-healthy population177.

Figure 8.1 - Flowchart of patient selection. CI = confidence interval, LLN = Lower Limit 
of Normal, N = number of individuals.

Thus, while lung volumes can be accurately measured using CT, proper refer-
ence equations for normal values are lacking. We aim to establish reference 
equations, using age, sex and height in a similar fashion to the GLI model, for 
CT-derived lobar volumes and TLV in a lung-healthy cohort, representative of 
the Northern European general population. 

Methods

Population

The Imaging in Lifelines study (ImaLife) comprises of 11,762 participants aged 
45 and above with an assessable inspiratory low-dose thoracic CT scan. 
ImaLife is part of the larger Lifelines cohort study. Lifelines is a multi-disciplinary 
prospective population-based cohort study examining, in a unique three-gen-
eration design, the health and health-related behaviours of 167,729 persons 

living in the north of the Netherlands, with 97.5% of them having Caucasian 
origin. It employs a broad range of investigative procedures in assessing the 
biomedical, socio-demographic, behavioural, physical and psychological 
factors which contribute to the health and disease of the general popula-
tion, with a special focus on multi-morbidity and complex genetics120. As a 
part of this, ImaLife is focused on imaging biomarkers that are gathered from 
low-dose chest CT scans. Lifelines participants aged 45 or older who had lung 
function test data available for the second visit in the Lifelines study were 
invited to undergo low-dose inspiratory chest CT scanning. The study design 
has been described in a previous publication32. 

The focus of the current study was on the lung-healthy population. We 
excluded participants with airflow obstruction as indicated by a Forced Expir-
atory Volume in one second (FEV) to Forced Vital Capacity (FVC) ratio below 
the lower limit of normal in spirometry, current smoking, self-reported history of 
obstructive pulmonary diseases (COPD/asthma), signs of lung disease on CT, 
individuals with a height outside the 99% confidence interval (CI) to address 
extreme outliers, and finally, participants aged over 80 years due to insuffi-
cient sample size. Specifics on exclusion criteria can be found in the Supple-
ment. However, the participants with airflow obstruction and with current 
smoking were included in a sub analysis, described below. This study has 
been approved by the medical ethics committee in the University Medical 
Centre Groningen, the Netherlands and has been registered with the Dutch 
Central Committee on Research involving Human Subjects (https://www.
toetsingonline.nl, Identifier: NL58592.042.16). All participants provided written 
informed consent.

Image Acquisition, Reconstruction and Analysis

Each participant underwent a supine, breath-coached to inspiration, low-dose 
chest CT scan using a third-generation dual-source CT scanner (SOMATOM 
Force, Siemens Healthineers, Germany). The scans were performed between 
August 2017 and October 2022. The scan was reconstructed using a sharp 
Qr59 kernel specifically designed for quantitative analysis, and a slice thick-
ness of 1mm and a slice increment of 0.7mm. All scans were automatically 
processed using an automatic AI-based lung and lobe segmentation algo-
rithm called LungSeg (https://github.com/jtabalon/LungQuant)178. These 
segmentations were used to calculate the total inspiratory lung volume (TLV) 
and lobar volumes. Volume was calculated by multiplying the number of 
voxels in each segmentation by the volume of an individual voxel. Segmenta-
tions with a TLV greater than 8L or less than 3L were flagged for visual inspec-
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tion. Abnormal segmentations were subsequently removed from the dataset.

Figure 8.2 - Reference equations for lobar volumes at all included ages for men and 
women for median, 0.5 percentile and 99.5 percentile heights. LUL = Left Upper Lobe, 
LLL = Left Lower Lobe, RUL = Right Upper Lobe, RLL = Right Lower Lobe, RML = Right 
Middle Lobe.

Figure 8.3 - Reference equations for lobar volumes from the minimum included height 
to the maximum included height for men and women for the minimum age, around 
the median age and the maximum age. LUL = Left Upper Lobe, LLL = Left Lower Lobe, 
RUL = Right Upper Lobe, RLL = Right Lower Lobe, RML = Right Middle Lobe.
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Statistical Analysis

The TLV and lobar volumes were visually assessed for a normal distribution. 
The reference equations were obtained by linear regression. Analogously to 
the reference equations established by GLI, this regression was stratified for 
sex, and the independent variables were age and height165. Statistical anal-
yses and visualizations were conducted using R version 4.2.2 (R Core Team, 
Vienna, Austria). P values below 0.05 were considered significant.

Sub-analysis of Subgroups with Lung Health Impairment

To investigate if the volumes in current smokers and people with airway 
obstruction (FEV₁/FVC ratio below the lower limit of normal) are indeed larger 
than in the lung-healthy group, we applied the calculated reference equa-
tions to current smokers and people with airway obstruction and compared 
the percentage predicted values in these groups to the values in the lung-
healthy group. The current smokers and individuals with airway obstruction 
groups were made up of participants that were excluded from the lung-
healthy group and were screened for all other exclusion criteria (including 
current smoking for airway obstruction group, and airway obstruction for 
current smoking group). We conducted independent two-sided t-tests, with 
Bonferroni correction applied to mitigate the effects of multiple comparisons, 
to compare the lung and lobar volumes of both these groups against those 
of the lung-healthy population.

Results

Population

The participant selection process is illustrated in Figure 8.1. For all participants 
(N=11,729) the inspiratory CT scan was analysed using LungSeg. A total of 
1,343 (11.5%) patients exhibited a FEV₁/FVC ratio below the lower limit of 
normal, 1,265 (10.8%) were identified as current smokers, 898 (7.7%) reported 
a history of pulmonary disease (COPD or asthma), 356 (3.0%) displayed signs 
of lung disease on CT, 266 (2.3%) participants were over the age of 80, 166 
(1.4%) had missing data, and 129 (1.1%) had a height outside the 99% confi-
dence interval. Ultimately, 7,306 participants were included and stratified by 
sex. Among them, 3,183 (43.6%) were men and 4,123 (56.4%) were women. 
Men had a mean age of 61.0 ± 9.6 years and a height of 1.82 ± 0.07 m, 
while women had a mean age of 59.7 ± 9.4 years, and a height of 1.68 ± 

0.06 m. Men and women demonstrated a significant difference for all consid-
ered parameters according to independent two-sided t-tests. Further demo-
graphic details of the included participants are presented in Table 8.1.

Men (n = 3,183) Women (n = 4,123) p-value

Characteristics

Age, years 61.0 ± 9.6 59.7 ± 9.4 <0.001

Height, m 1.82 ± 0.07 1.68 ± 0.06 <0.001

Weight, kg 86.9 ± 12.4 73.8 ± 12.6 <0.001

Spirometry

FEV1, L 3.92 ± 0.65 2.84 ± 0.47 <0.001

FEV1 %-predicted, % 103.6 ± 13.5 105.6 ± 13.7 <0.001

FVC, L 5.17 ± 0.82 3.71 ± 0.59 <0.001

FVC %-predicted, % 107.1 ± 14.1 108.2 ± 14.1 <0.001

FEV1/FVC ratio 0.76 ± 0.05 0.77 ± 0.05 <0.001

CT-derived volumes

TLV (L) 6.12 ± 1.20 4.71 ± 0.79 <0.001

Volume LUL (L) 1.47 ± 0.28 1.09 ± 0.18 <0.001

Volume LLL (L) 1.37 ± 0.37 1.08 ± 0.25 <0.001

Volume RUL (L) 1.19 ± 0.23 0.89 ± 0.16 <0.001

Volume RML (L) 0.56 ± 0.13 0.40 ± 0.09 <0.001

Volume RLL (L) 1.51 ± 0.40 1.24 ± 0.27 <0.001

Table 8.1 - Demographic characteristics of the study population. The demographics 
are summarized as follows: Data is expressed as the mean ± standard deviation 
for continuous variables, while participant numbers are presented as counts and 
percentages relative to the total within each group. p-values were determined using 
an independent two-sided t-test. FEV₁ = Forced Expiratory Volume in one second, 
FVC = Forced Vital capacity. TLV = Total Lung Volume, LUL = Left Upper Lobe, LLL = 
Left Lower Lobe,  RUL = Right Upper Lobe, RLL = Right Lower Lobe, RML = Right Middle 
Lobe.

Regression Analysis

All volumes were normally distributed. Men demonstrated higher lung and 
lobar volumes at the same height than women. The regression models fitted 
for the volumes demonstrated consistent patterns, particularly, positive asso-
ciations with both age and height, with the exception of the LLL in women as 
this volume did not seem to be associated with age. The explained variance 
by the regression models ranged from 7.8% to 19.9%. In general, the RLL was 
the largest lobe, followed by the LUL and the LLL, which were about equal in 
size. The RUL was smaller, and the RML was, by a large margin, the smallest. 



120 121

Chapter 8

8

The volume of the upper lobes was more related to age than the lower lobes; 
with increasing age the upper lobes comprised an ever-larger proportion of 
the TLV for both men and women. At advanced age, this led to the LUL 
on average becoming larger than the RLL in men. The reference equations 
can be appreciated in Table 8.2. Figure 8.2 demonstrates the volumes for 
increase age at three different heights. Figure 8.3 demonstrates the volumes 
for increasing height at three ages.

Parameter Reference equation RSD R2

Men

TLV (L) -8.514 + 7.090 * H + 0.0287 * A 1.107 0.151

Volume LUL (L) -2.259 + 1.717 * H + 0.0100 * A 0.251 0.199

Volume LLL (L) -1.763 + 1.633 * H + 0.0027 * A 0.354 0.078

Volume RUL (L) -1.469 + 1.148 * H + 0.0094 * A 0.213 0.179

Volume RML (L) -0.849 + 0.686 * H + 0.0026 * A 0.123 0.116

Volume RLL (L) -2.143 + 1.883 * H + 0.0039 * A 0.382 0.087

Women

TLV (L) -5.626 + 5.664 * H + 0.0133 * A 0.713 0.177

Volume LUL (L) -1.474 + 1.355 * H + 0.0048 * A 0.164 0.199

Volume LLL (L) -1.164 + 1.338 * H - 0.0001 * A 0.236 0.107

Volume RUL (L) -0.959 + 0.897 * H + 0.0057 * A 0.144 0.167

Volume RML (L) -0.504 + 0.502 * H + 0.0009 * A 0.088 0.098

Volume RLL (L) -1.510 + 1.556 * H + 0.0021 * A 0.251 0.116

Table 8.2 - Regression analysis with the resulting reference equations. RSD = Residual 
standard deviation, R2 = adjusted regression coefficient squared, TLV = Total Lung 
Volume, LUL = Left Upper Lobe, LLL = Left Lower Lobe, RUL = Right Upper Lobe, RLL = 
Right Lower Lobe, RML = Right Middle Lobe. H = height (m), A = age (years).

Populations With Lung Health Impairments

The mean percentage predicted TLV using the reference equations of Table 
8.2, was 103.1 ± 17.5 % for the current smoking subgroup, and 110.3 ± 16.9 
% for the airway obstruction subgroup. Table 8.3 demonstrates these values 
in addition to the mean percentage predicted values with standard devia-
tions for all the lobar volumes within current smokers and airway obstruction 
subgroups, all of which follow normal distributions. The percentage predicted 
values of the lung and lobar volumes of the airway obstruction subgroup 
were significantly different from the lung-healthy population (all p<0.001). The 
male current smokers were significantly different to the lung-healthy popula-
tion regarding percentage predicted values for TLV (p=0.002), LUL and RUL 

(both p<0.001), but not for LLL (p=0.835), RML (p=1) and RLL (p=0.410). For 
female current smokers, all lung and lobar predicted volumes were signifi-
cantly different from the lung-healthy population (all p<0.001, except LLL: 
p=0.025), with the exception of the RLL (p=1). The largest differences were 
observed in the upper lobes.

Current smokers CS versus LH

Adjusted p

Airway 
obstruction

AO versus LH

Adjusted p

Men

Participants, N 603 298

TLV, % predicted 103.1 ± 17.5 0.002 110.3 ± 16.9 <0.001

LUL, % predicted 103.4 ± 17.3 <0.001 110.1 ± 17.7 <0.001

LLL, % predicted 102.5 ± 25.9 0.835 110.4 ± 25.5 <0.001

RUL, % predicted 105.2 ± 17.8 <0.001 113.0 ± 21.6 <0.001

RML, % predicted 101.1 ± 21.7 1 107.6 ± 25.8 <0.001

RLL, % predicted 102.6 ± 23.9 0.410 109.2 ± 23.9 <0.001

Women

Participants, N 575 398

TLV, % predicted 103.1 ± 15.3 <0.001 108.0 ± 14.7 <0.001

LUL, % predicted 103.2 ± 15.1 <0.001 108.4 ± 16.4 <0.001

LLL, % predicted 103.2 ± 22.0 0.025 108.2 ± 22.0 <0.001

RUL, % predicted 104.2 ± 16.9 <0.001 110.1 ± 18.7 <0.001

RML, % predicted 104.4 ± 22.2 <0.001 104.8 ± 25.9 <0.001

RLL, % predicted 101.6 ± 20.9 1 107.4 ± 20.2 <0.001

Table 8.3 - Percentage of predicted lung and lobar volumes across lung-healthy, 
current Smokers, and airway obstructed groups. The “current smokers” group consists 
of the current smokers that were excluded for the lung-healthy group and were 
filtered for all other exclusion criteria. “Airway obstruction” refers to participants that 
were excluded for the lung-healthy group based on a Forced Expiratory Volume in 
one second/Forced Vital Capacity ratio below the lower limit of normal, and subse-
quently filtered for all other exclusion criteria. The percentage of predicted lung and 
lobar volumes for all groups was calculated using the reference equations (Table 2). 
Statistical significance was determined through independent two-sided t-tests. The 
adjusted p-values were obtained using the Bonferroni method to account for multiple 
comparisons (24 tests in total). P values larger than 1, which may occur due to the 
Bonferroni correction, are truncated to 1. TLV = Total Lung Volume, LUL = Left Upper 
Lobe, LLL = Left Lower Lobe,  RUL = Right Upper Lobe, RLL = Right Lower Lobe, RML = 
Right Middle Lobe, CS = Current Smokers, LH = Lung Healthy, AO = Airway Obstructed.
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Discussion

In this study we established reference equations for lung and lobar volumes, 
based on inspiratory chest CT in a large sample of a general population 
without lung disease, using linear regression analysis. Age and height were 
positively associated with lung and lobar volumes, except for the LLL in 
women. The RLL was consistently the largest lobe, followed by the LUL and 
LLL, then the RUL and lastly the RML. Upper lobes showed a stronger associa-
tion with age, indicating they comprise more of the total lung volume as indi-
viduals age. Men have higher lung volumes than women at the same height. 
Overall, age and height explained 7.8% to 19.9% of the variation in volumes.

Lung volume measurement by CT has the benefit of allowing regional volume 
assessment, such as lobar volumes, possibly beneficial for treatments like EBV 
and lung volume reduction. The only other modality capable of achieving this 
is VP/SPECT which is much less available179. Prior studies, specifically related 
to lobar volumes, have mostly focused on ventilation or collapsibility of the 
lobes by comparing scans in in- and expiration180,181. In EBV studies, atten-
tion regarding lobar volumes centres on pre- and post-treatment changes182. 
A lower limit for important difference in lobar volume reduction between 
pre- and post-treatment has been established at 563 mL183. This metric does 
not consider variations influenced by patient height, age, and sex and may 
therefore be refined by an approach similar to that employed in the present 
study. In terms of reference equations for lobar volumes, to our knowledge, 
only one study previously established such equations at full inspiration based 
on a cohort of 469 COPDGene participants without COPD (92 never smokers 
and 377 current or former smokers), incorporating height, sex, and ethnicity168. 
Unlike our study and the GLI reference equations for TLC, they did not observe 
a significant relationship between age and any of the volumes, possibly 
attributed to the small cohort size. They did find similar results regarding the 
relationship to height and a similar intercept168. In our study, ethnicity strat-
ification was not performed, given that 97.5% of the participants identified 
as having Caucasian origins. Similarly to this prior study, we stratified for sex, 
justified by our finding that women had consistently smaller lobar volumes for 
the same height compared to men.

The observation that upper lobes had a greater increase in volume with 
age, as opposed to lower lobes, suggests a potential susceptibility of upper 
lobes to damage, even among the lung-healthy population. This aligns with 
research indicating a higher incidence of emphysema and lung cancer 
in the upper lobes184–186. Therefore, it would be expected that smokers and 
those with COPD would exhibit relatively larger upper lobes compared to 

their lower lobes when compared to healthy individuals. In this study, we 
observed a significant difference between the lung-healthy population and 
current smokers for every lung or lobar volume, except for the LLL and RML in 
men and the RLL in men and women. This further supports the idea that the 
upper lobes may have a greater susceptibility to damage. 

Regarding CT lung volumes, previous studies primarily compared TLV meas-
urements obtained at inspiration and/or expiration to plethysmography-de-
rived volumes, showing strong correlations169–176,187. Typically, TLC was slightly 
higher than measured TLV, while RV was lower at expiration186. In line with this, 
a previous study established that there is a substantial discrepancy between 
the GLI-predicted TLC and TLV, with significantly larger estimated TLC than 
measured TLV177. This difference can only partially be explained by measure-
ment position variations between seated plethysmography and supine CT 
scans, with a 9.9% smaller volume in the supine position188. 

This study’s strengths lie in its extensive lung-healthy sample of 7,306 indi-
viduals. Additionally, the current study included a standardized CT scan 
protocol on third generation dual-source CT, with very short acquisition time 
due to high-pitch scanning mode. Previous research has shown consistent 
CT-based measurements for lobar volumes, with TLV being more reproduc-
ible than TLC as measured by body-plethysmography173, which further vali-
dates our approach. The reference equations are applicable for assessing 
lobe-specific hyperinflation in COPD, which is specifically potentially useful 
in treatments like EBV and lung volume reduction. Furthermore, these equa-
tions may be of potential value in assessing other conditions like restrictive 
pulmonary diseases or surgical planning for lobe removal in lung cancer 
patients. The application of the derived equations to smokers and subjects 
with airway obstruction, indeed showed higher volumes (especially in the 
upper lobes). This shows that the equations are capable of pinpointing differ-
ences between groups.	

There are some limitations with this study. The study focused on a region-
ally specific population from the north of the Netherlands, characterized by 
above-average height, approximately 5 cm above the WHO growth chart 
median189 and predominantly Caucasian ethnicity. Additionally, this cohort 
consisted of individuals between the ages of 45 and 80. Given that EBV is 
typically used for severe emphysema patients aged around 50-70, these limi-
tations are acceptable for our purposes. However, it is crucial to recognize 
that these reference equations may therefore not be universally applicable. 
It would be important to calibrate these reference equations in other popu-
lations.
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The explained variance for the lobar and lung volumes was relatively low, 
ranging from 7.8 % to 19.9%. This suggests that other factors, not included in 
the regression analysis, play a role in the size of the lobes and lungs. However, 
these factors are unknown, and no other explanatory factors are used in 
similar approaches to reference equations such as the GLI reference equa-
tions for TLC, which reported coefficients of variation of over 10% for their 
models165. These unknown factors are likely related to the shape and size of 
the chest. While sex and height are now used as crude approximations for 
these factors, they do not fully capture the complexity of individual variations. 
Genetic factors could also play a role, as well as aspects like fissure integrity.

In conclusion this study establishes reference equations for lobar volumes 
and total lung volume at inspiratory chest CT by sex, adjusting for age, and 
height in a population of lung-healthy individuals between the ages 45 and 
80 of Northern European descent. Lobar volumes were higher in taller individ-
uals and in men and increased with age especially for upper lobes.
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Discussion
CT scans play a pivotal role in the creation of imaging biomarkers beyond 
visual evaluations, in particular due to CT’s volumetric and quantitative 
nature. For imaging of the chest, CT scans allow comprehensive measure-
ments of both the parenchyma of the lungs and the airway tree. CT scans, 
acquired as part of lung cancer screening or for clinical indications, can be 
used for bronchial parameter analysis, offering potential for wider applica-
tion in population health 33. However, to leverage this capability effectively, 
we need clear understanding of reference distributions in a healthy general 
population, and differences in bronchial parameters between healthy and 
unhealthy individuals must be discernible.

Our review and meta-analysis of existing literature in Chapter 2 revealed 
not only significant differences in CT-derived bronchial parameters between 
never-smokers, smokers, COPD patients, and asthma patients but also an 
evident scarcity of studies involving large healthy populations. The aim of 
this thesis was to address this imbalance by targeting the knowledge gap of 
bronchial parameter measurements within a large, predominantly healthy 
general population. The thesis further elucidates how factors such as sex, 
height, weight, and smoking history influence these bronchial parameters, 
and lung lobe measurements. To accomplish this objective, we first focused 
on developing and validating an automated method for segmenting the 
airway lumen and wall, suitable for use in the large set of scans from the 
Imaging in Lifelines (ImaLife) study.

Automated airway segmentation and bronchial parameter  
calculation

Airway segmentation historically has been a laborious task, necessitating 
considerable manual input 9. Semi-automated approaches improved the 
speed to process each scan, yet still required intervention from trained tech-
nicians and many man-hours 94. For large-scale studies such as ImaLife, with 
over 12,000 scanned participants, this would quickly result in months of expen-
sive, dedicated labour. Recently, modern deep-learning methods have 
enabled the automated and powerful processing of 3D images for special-
ised tasks such as segmentation. We utilized this deep-learning approach for 
automatic feature extraction and learning from low-dose CT scans for airway 

CHAPTER 9
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segmentation.

In Chapter 3, we introduced a method for generating a high-quality training 
dataset to enhance the performance of deep-learning models when applied 
to specific scans. Such datasets rely on pairing scans with corresponding 
accurate “ground truth” segmentations, a task that is both time-consuming 
and prone to errors. To maximise the quality of training data, time-consuming 
input from experts in the target domain is needed, this can result in a limited 
amount of available training data for deep-learning in specific medical-im-
aging tasks. Additionally, deep-learning models may perform sub optimally 
when applied outside the scope of their original training. We addressed these 
challenges by using a deep-learning 3D U-Net model, already trained on data 
from the Danish lung cancer screening trial (DLCST) 98 and Erasmus MC-Sophia 
datasets 9, to generate preliminary segmentations of ImaLife scans, albeit 
incomplete. To refine these segmentations, we manually extended them 
and added missing branches using open-source software. Consequently, an 
updated model trained with these improved segmentations achieved more 
comprehensive airway delineation compared to its predecessor. Given the 
scarcity of high-quality labelled data for medical imaging segmentation, our 
strategy not only conserves valuable time but also extends the utility of deep-
learning models by supporting their re-training for diverse scanning protocols 
and applications. Moreover, the use of open-source resources facilitates the 
swift calibration of AI models to different contexts, streamlining the produc-
tion of datasets tailored for AI training. Lastly, the deep-learning method-
ology employed in our investigation delivers good performance even with 
relatively small training datasets, thereby reducing the labour required to 
create an effective training dataset 96. 

Building on the deep-learning approach for comprehensive airway segmen-
tation, we refined the delineation of the lumen and wall for the entire airway 
tree. This step was essential for accurate bronchial parameter quantifica-
tion. To this end, we integrated and validated an optimal-surface graph-cut 
method for 3D refinement of the airway lumen and concurrent delineation 
of the airway wall 115. We presented this in Chapter 4, where we built an 
automated pipeline for low-dose chest CT that extracts accurate measure-
ments of the airway lumen and wall (when compared against ground truth 
measurements). This system combines the strengths of our previously trained 
deep-learning method with fine tuning based on? the graph-cut approach 
using a standardised imaging phantom scanned using the ImaLife protocol 
116. We validated the pipeline performance on short-term (3-4 month) repeat 
scans of ImaLife participants and demonstrated that our methods achieved 

moderate-to-good reproducibility, attaining a comparable level of precision 
for bronchial parameters such as luminal area and wall thickness to those 
obtained by earlier methods 10 – while also improving the reproducibility of 
the Pi10 measurement compared to previous methods 125. A notable strength 
of this approach is the absence of the bias, inherent in manual or full-width 
half-maximum measurements of airway structures, which often results in over-
estimation of the airway wall 128. Both parts of the pipeline are open-source 
and available to the wider research community (https://github.com/antoni-
oguj/bronchinet and https://bitbucket.org/opfront/opfront). In combination 
with the research outlined in Chapters 3 and 4 they could be adapted for use 
with other datasets.

While the rapid advancement in medical imaging analysis has provided more 
robust measurements of bronchial structures, there is a lack of standardisation 
across this research field. This may be best highlighted by the inconsistency 
with how one of the most used bronchial parameters is not always calcu-
lated the same way. Pi10 is most often defined as “the square root of the wall 
area of a hypothetical airway with an internal perimeter of 10mm” and origi-
nated from histological analysis of airways 17,121. Yet, there are studies in which 
Pi10 is taken as something completely different e.g. the number of airways 
with an internal perimeter of 10mm 21 or wall thickness at this hypothetical 
airway 130. These discrepancies indicate that the field of bronchial parameter 
research would benefit from concentrated efforts at standardisation as other 
biomarkers such as CT atherosclerosis has 190. It is exciting to see early efforts 
beginning to explore this topic 191. In the absence of reference methods for 
bronchial parameter evaluations, we made every effort to ensure that our 
measurements were accurate and reproducible through our investigations in 
Chapters 3-4 and provided our methods as open-source code that can be 
used or adapted down the line. 

The steps we took to develop and validate this pipeline demonstrate potential 
for use in clinical practice. The low-dose CT protocol is a feasible approach 
for this task, already used in lung cancer screening. The automation of bron-
chial parameter measurements can reduce the time and labour, allowing 
for their broader application in clinical settings, which could enhance the 
efficiency of patient assessments and follow-up. Before integration into a clin-
ical workflow, the software must be approved by regulatory bodies. The Euro-
pean Medicine Agency (EMA) and Food and Drug Administration (FDA) have 
strict protocols and requirements for software. Both bodies are developing 
requirements for medical AI alone and in collaboration with each other. The 
research and development of medical AI should follow their suggestions and 
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guidelines even from an early research stage 192,193. 

Bronchial parameters in the general population

interest in tracking disease-related airway changes is growing. In smokers 
at-risk for developing COPD, bronchial parameters have been able to predict 
who progress to clinical disease and who do not 130. For asthmatic patients, 
bronchial parameters have been used to monitor treatment response to 
medication 194. However, to adequately interpret bronchial parameter 
values, it is necessary to know the distribution of normal values within the 
general population. Based on reference distributions of CT-derived bron-
chial parameters, abnormal values on the ends of the range can be used 
for detection of early disease. As with other biometrics, bronchial parameters 
may be influenced by the individual’s height, weight, and age among other 
things. To separate changes due to illness from changes due to the individu-
al’s factors, the influence of demographic factors on bronchial parameters 
should be elucidated. However, this influence has previously been unclear 
as the study of healthy individuals was limited to small sets of individuals used 
as controls, often alongside unhealthy groups, a finding highlighted by our 
systematic review and meta-analysis from Chapter 3. Previous studies investi-
gating CT-derived bronchial parameters have shown inconsistencies due to 
variations in study sample characteristics and methods. For example some 
studies reported thicker airways in healthy men versus women 25,85 while others 
measured thicker airways in women versus men 27 or no difference by sex 135. 
These discrepancies may stem from differences in scan protocol, method for 
airway measurement, population characteristics and scale of the study.

Using the previously outlined automated bronchial parameter measurement 
method, in Chapter 5 we obtained measurements from low-dose inspiratory 
CT scans for all 12,041 participants of the ImaLife study. The ImaLife study 
consists of a sample of the general population, allowing a comprehensive look 
at a largely healthy study population. This study population also contained 
the largest number of never-smoking and respiratory healthy participants 
yet, granting a unique opportunity to definitively measure a large number of 
healthy lungs.

Our large-scale study provides conclusive evidence that sex, height, weight, 
and age influence bronchial parameter measurements. Interestingly, 
increasing age showed a widening of the lumen and a thickening of the wall, 
an observation that was not previously made. These changes likely reflect 
the airway changes that occur with normal ageing. Notably, the association 

with age was not strongly evident in the wall area percent parameter, where 
the variance explained by sex, age, height, weight, and smoking history was 
the lowest (10.4%) among all acquired bronchial parameters. This indicates 
that changes in wall area percent may be more attributable to other factors 
such as airway remodelling from disease processes rather than differences in 
demographics.

We further explored bronchial parameters in Chapter 6, investigating whether 
long-term smoking cessation relates to airway remodelling. Previous research 
in heavy smokers and participants with COPD has highlighted significant 
changes in the airways following smoking cessation in the first one or two 
years after smoking cessation 18,143,163. Our results in ex-smokers from the ImaLife 
dataset demonstrated that there are potential ongoing airway improvements 
over decades for smokers who quit, particularly those with unhealthy lungs. 
Once again, in contrast to other parameters wall area percent stood out 
as a bronchial parameter of note as it changed with differences in smoking 
habit and unhealthy respiratory state.

With improvements in airway segmentation, additional bronchial parame-
ters such as total airway count (TAC) have received research interest. Simply 
put, TAC is a sum of all the separate branches identified within the airway 
segmentation. It is hypothesised that a reduction in TAC could be due to a 
loss in branches from mucous plugging, destruction of small airways or airway 
collapse. It is also believed that a more complex branching tree is an indi-
cator of good health, whereas a less complex tree could indicate disease, 
with complexity measured as TAC or airway fractal dimension 195. In chapter 
7 we expanded current knowledge on TAC with a focus on measurements 
in the majority, lung-healthy general population. Additionally, we compared 
TAC to more established CT-based bronchial parameters such as Pi10, wall 
area percent and luminal area. Our findings confirmed the value of TAC 
as an additional bronchial parameter to calculate due to its comparable 
performance in predicting spirometry categories for participants, as well as 
the ease with which it can be calculated. Yet, as seen with Pi10, the param-
eter would benefit from standardisation efforts regarding scan protocol and 
measurement method, as absolute values for TAC differ per study but trends 
mirror each other when evaluating TAC changes relative to spirometry.

Apart from airway measurements, lung anatomical measurements and paren-
chymal assessments are of importance in different clinical scenarios. Evalu-
ating individual lung lobe sizes is crucial during the planning and patient selec-
tion for lung resection, transplant, and certain COPD treatments. Currently, 
models from the Global Lung Initiative are used to estimate lung volumes 
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for procedural planning, however recent studies have highlighted that CT 
measurements provide better estimates for lung volumes177. This finding shows 
promise for more detailed application of CT measured lung volumes. To study 
the anatomical lung measures in more depth, we segmented individual lung 
lobes using the automated pipeline in Chapter 8, to establish reference 
lobar volumes for a healthy population. We found significant positive asso-
ciations of age and height with lung and lobar volumes across both sexes, 
especially for the upper lobes. In men, lung lobe volumes were larger than in 
women of the same height. Using this information, we developed reference 
equations for lung and lobar volumes using inspiratory chest CT scans from a 
substantial sample of the general population without lung disease. As meas-
urement of lung lobes is essential for targeted treatments like endobronchial 
valve placement and lung volume reduction, reference values for expected 
normal volumes can prove useful in planning treatment. In combination with 
our reference bronchial parameter measurements, more targeted treatment 
could be provided to improved outcomes. 

For the research conducted as part of this thesis, there are a number of limi-
tations that apply. The ImaLife dataset is a sample of the general popula-
tion from the north of the Netherlands. This general population is predomi-
nantly white, and is the tallest in the world 152. Due to this, the reference values 
established as part of this thesis may require adapting for populations that 
differ from that within the study. The study sample lacks large numbers of 
severe airway disease, which limits the applicability of our methods to severe 
disease cohorts as the reproducibility of measurements on such groups has 
not been evaluated in our studies yet. As touched upon in the discussion 
thus far, scan protocols and methods can influence the eventual bronchial 
parameter measurement, limiting the applicability of our derived reference 
values for cases where a different scanner or scanning protocol are used.

Future directions

following the investigations in this thesis there are several promising areas to 
explore next. AI is advancing at a rapid pace and while the U-Net architec-
ture is yet to be beaten for medical segmentation tasks 196, novel approaches 
are continuously developed and evaluated for better performance 197. In 
addition to improved methods for airway segmentation, new generations of 
scanners such as photon-counting CT offer higher image quality and spatial 
resolution at similar radiation dose, which could translate into higher accu-
racy measurements of the airways as has been seen with lung nodule meas-

urement 198.Alongside this, efforts to standardise bronchial parameters can 
contribute to their adoption in clinical practice. As this field of research is 
still relatively new and constantly advancing with novel parameters, focus 
on a more established and validated bronchial parameter, like Wall Area 
Percentage, could be good to get started with.

The follow up of our findings with longitudinal studies are pivotal and could 
offer valuable insights into the evolution of bronchial parameters over time to 
confirm the associations we have observed with airway changes and ageing. 
By tracking these changes in both healthy individuals and varied disease 
cohorts, we stand to gain a deeper understanding of disease progression 
from an early stage as well as the role bronchial parameters can play in iden-
tifying those early stages. This is especially pertinent in validating the bronchial 
parameter improvements observed following long-term smoking cessation in 
Chapter 6, which we could so far only evaluate in a cross-sectional manner.

With the size and composition of the ImaLife dataset there is an opportunity to 
zoom in on the participant sample at the threshold of being lung-unhealthy. 
There may be discernible differences in bronchial parameters and lung meas-
urements at this early stage that could help guide screening, monitoring, 
or treatment strategies for improved population health. Another promising 
avenue lies in exploring the role of environmental factors in respiratory health, 
such as unravelling the impacts of air pollution and occupational exposures 
on bronchial health. While the ImaLife dataset is large, it does not cover the 
diversity in populations across the globe. Towards this, the methods we have 
outlined can be repeated in other general population samples around the 
world to establish and contrast their bronchial parameters to those that were 
derived in this thesis. 

Outside of technical and clinical research, future investigations into the usea-
bility of bronchial parameters and airway segmentations bear interest. For 
example, the segmentations could be visualised with automatically labelled 
branches. Areas of the airway tree with measurements that deviate from 
reference values could be automatically highlighted, speeding up review by 
researchers or clinicians in downstream tasks.
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Conclusion

This thesis establishes the use of low-dose chest CT for automated bronchial 
parameter evaluation with high reproducibility. The research described in 
this thesis demonstrates that bronchial parameters are influenced by demo-
graphic factors such as sex, height, weight, and smoking habits in a healthy 
population. Using scans from lung healthy ImaLife participants, we gained 
insights into how bronchial parameters and lung lobe volumes vary across 
these factors. This work fills a significant gap as previous research in this field 
centred on individuals with COPD or asthma. Our findings have resulted in 
reference equations and percentile charts that could enhance the appli-
cation of bronchial parameters in early disease detection and treatment 
monitoring. Particularly, wall area percent emerged as a sensitive bronchial 
parameter for assessing changes in airways due to smoking and disease 
while not being heavily influenced by demographic factors. Our compre-
hensive evaluation of the fully segmented airway tree enabled evaluation of 
new bronchial parameters such as the total airway count which was shown 
to perform comparably to wall area percent while being easier to calculate.

Given that scan characteristics can influence measurements, dataset-spe-
cific optimization may be necessary to apply the automated method devel-
oped here to other datasets. Towards this our techniques are open-source, 
and the methods outlined in this thesis considerably reduce the time required 
to prepare training data for fine-tuning the deep-learning model. The fully 
automated approach is highly applicable to large-scale applications such 
as screening and would not impose significant time demands on radiologists. 
Thus, this thesis not only advances our understanding of bronchial parameters 
but also streamlines their potential practical application in medical imaging.
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CHAPTER 11
Summary

Part 1: Bronchial parameters on chest CT in context

The ability to extract detailed information from computed tomog-
raphy scans is increasing with advancements in medical computer 
vision. This thesis outlines the development, validation and use of such 
techniques to measure bronchial parameters in a large, generally 
healthy study cohort from the general population. Starting with the 
foundational context and a systematic review, Chapter 2 presents 
an overview of current methodologies employed to assess bron-
chial wall parameters for patients with chronic obstructive pulmonary 
disease (COPD), asthma, never smokers and individuals who smoke or 
smoked. The systematic review and meta-analysis show that existing 
studies predominately focus on populations diagnosed with COPD or 
those with smoking history. Only few and mainly small-scale studies 
concern measurements of healthy individuals.

Part 2: Automated bronchial parameter evaluation

Advancing into the technological core of the thesis, Chapters 3 and 
4 cover our approaches for automated airway segmentation and 
bronchial parameter calculation. Chapter 3 shows the approach for 
efficient population-specific training of image segmentation models. 
Initial airway segmentations were derived from a pre-trained deep-
learning model architecture specialised in segmentation based on 
volumetric CT images (U-Net). We performed manual correction of 
the initial segmentations in a small dataset and used them as ground 
truth to retrain the U-Net. The retrained model demonstrates improved 
accuracy and completeness of airway segmentations compared to 
the initial segmentations.

Chapter 4 builds on our work for automated bronchial parameter 
calculation. We introduce an automated pipeline for segmenting the 
lumen and wall surfaces of the bronchial tree. The pipeline utilizes the 
U-Net from Chapter 3 for airway extraction and an optimal-surface 
graph-cut method to segment the wall surrounding the extracted 
airways. To validate this approach, we measured bronchial param-
eters from the segmentations of initial and repeat scans of partici-
pants in the Imaging in Lifelines (ImaLife) study, taken an average of 
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3 months apart, and assessed their repeatability. The results demon-
strate that the measurements exhibit sufficient reproducibility, and 
that the overall automated process can be applied to a large-scale 
dataset.

Part 3: Airway and lung measurements in the general population

Chapter 5 applies these advanced methodologies to a large, lung-healthy 
cohort from the ImaLife study, establishing a comprehensive set of reference 
bronchial parameters. Using low-dose CT scans, bronchial parameters were 
automatically calculated using the approaches of Chapters 3-5. The results 
show that all bronchial parameters correlate significantly with characteristics 
such as age, sex, height, and weight, and smoking history. These population 
characteristics explain up to 46% of the variation in bronchial parameters. 
The findings provide a detailed characterisation of healthy airways and refer-
ence values for future studies on bronchial parameters.

In Chapter 6 we evaluated the relationship of smoking cessation duration 
with CT-based bronchial morphology based on a cross-sectional analysis 
of the general population. We studied whether longer periods of smoking 
cessation resulted in bronchial measurements approaching normal values. 
The observed correlation between smoking cessation duration and airway 
morphology suggests that for participants who had a history of respiratory 
illness, abnormal spirometry or imaging signs of respiratory disease, the detri-
mental effects of long-term smoking on the lungs are not entirely permanent 
and can be ameliorated through sustained cessation, providing an addi-
tional compelling argument for sustained smoking cessation efforts from a 
public health perspective. 

Exploratory insights continue in Chapter 7 where we evaluate the Total 
Airway Count (TAC) and the impact of age, sex, height, weight, and smoking 
habits on TAC variation between individuals with healthy lungs and those with 
compromised lung health. Moreover, we determine the relationship between 
TAC and variations observed in spirometry results and assess TAC’s predictive 
capabilities in differentiating between participant groups based on spirom-
etry thresholds. Our findings reveal significant distinctions in CT-based TAC 
between lung-healthy and lung-unhealthy groups within the general popu-
lation. Importantly, our analysis indicates that TAC holds potential as a simpler 
alternative to wall area percent and luminal area for predicting spirometry 
thresholds while providing comparable predictive performance.

In Chapter 8, the examination of individual lung lobe volumes further 
complements the overall thesis by providing reference equations for lung 
lobe volumes based on demographic attributes. These measurements are 
potentially useful for precisely planning targeted respiratory treatments, such 
as lung volume reduction procedures for COPD.

The comprehensive findings are discussed in Chapter 9 with additional 
commentary on future perspectives. The potential integration of advanced 
AI tools and an enhanced understanding of environmental impacts on 
respiratory health stand out as promising areas for future studies.

Overall, this thesis contributes to understanding of CT-based bronchial param-
eters in the lung healthy population by using state-of-the-art imaging analysis 
techniques. By establishing reference values of bronchial parameters in a 
large and healthy population and examining impact of lifestyle factors such 
as smoking cessation, this work provides valuable insights into healthy respira-
tory physiology as visualised on low-dose CT and sets the stage for future 
explorations in CT-based bronchial evaluations.
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Samenvatting

Deel 1 – Bronchiale parameters op CT-scan in context

De mogelijkheid om gedetailleerde informatie uit een computertomografie 
(CT) scan te halen neemt toe met de huidige ontwikkelingen in medische 
computervisie. Deze thesis beschrijft de ontwikkeling, validatie en toepassing 
van dergelijke technieken om bronchiale parameters te meten in een grote, 
over het algemeen gezonde onderzoeksgroep uit de algemene bevolking. 
Beginnend met de basiscontext en een systematische review, presenteert 
Hoofdstuk 2 een overzicht van de huidige methodologieën die worden 
toegepast om bronchiale parameters te beoordelen bij patiënten met chro-
nisch obstructieve longziekte (COPD), astma, individuen die roken, gerookt 
hebben of nooit gerookt hebben. De systematische review en meta-analyse 
tonen aan dat bestaande studies voornamelijk gericht zijn op populaties 
met een diagnose van COPD of die een rookgeschiedenis hebben. Slechts 
enkele en voornamelijk kleinschalige studies hebben betrekking op metingen 
bij gezonde individuen.

Deel 2 – Geautomatiseerde evaluatie van bronchiale parameters

Hoofdstukken 3 en 4 betreffen onze benadering voor geautomatiseerde 
luchtwegsegmentatie en berekening van bronchiale (luchtwegwand) 
parameters als start van het technische gedeelte van dit proefschrift. Hoofd-
stuk 3 beschrijft de benadering voor efficiënte populatiespecifieke training 
van beeldsegmentatie modellen. De eerste luchtwegsegmentaties werden 
verkregen vanuit een vooraf getraind deep-learning model gespecialiseerd 
in segmentatie van volumetrische CT-beelden (U-Net). We voerden hand-
matige correctie van de initiële segmentaties uit in een kleine dataset en 
gebruikten deze als gouden standaard om het U-Net model opnieuw te 
trainen. Het opnieuw getrainde model toont verbeterde nauwkeurigheid en 
volledigheid van luchtwegsegmentaties vergeleken met de initiële segmen-
taties.

Hoofdstuk 4 bouwt voort op ons werk voor de geautomatiseerde berek-
ening van bronchiale parameters. We introduceren een geautomatiseerde 
pijplijn voor het segmenteren van het lumen en de wandoppervlakten van 
de bronchi. De werkstroom maakt gebruik van de U-Net uit Hoofdstuk 3 
voor segmentatie van de luchtwegen en een ‘optimal-surface graph-cut’ 
methode om de wanden rondom de luchtwegen te segmenteren. Ter vali-

datie van deze benadering hebben we metingen verricht van de bron-
chiale parameters op initiële en herhaalde scans van deelnemers van de 
Imaging in Lifelines (ImaLife) studie, die gemiddeld 3 maanden tussen elkaar 
zijn gemaakt. Vervolgens beoordeelden we de overeenkomst in bronchiale 
parameters. De resultaten tonen aan dat de metingen voldoende reprodu-
ceerbaarheid vertonen en dat het algehele geautomatiseerde proces kan 
worden toegepast op een grootschalige dataset.

Deel 3 – Luchtweg- en longmetingen in de algemene bevolking

Hoofdstuk 5 past de hierboven geschreven geavanceerde methodologieën 
toe op een grote  groep deelnemers met gezonde longen uit de ImaL-
ife-studie, waarbij een uitgebreide reeks bronchiale referentieparameters is 
onderzocht. Met behulp van lage-dosis CT-scans werden bronchiale param-
eters automatisch berekend met de benaderingen uit Hoofdstukken 3-5. We 
vonden dat alle bronchiale parameters een relatie vertonen met kenmerken 
zoals leeftijd, geslacht, lengte en gewicht, en rookgeschiedenis. Deze popu-
latiekenmerken verklaren tot 46% van de variatie in bronchiale parameters 
tussen verschillende personen. De bevindingen bieden een gedetailleerde 
karakterisering van gezonde luchtwegen en referentiewaarden voor toekom-
stige studies over bronchiale parameters.

In Hoofdstuk 6 evalueerden we de relatie tussen de duur van stoppen met 
roken en de bronchiale parameters op basis van een cross-sectionele analyse 
van de algemene bevolking. We bestudeerden of personen die al langere 
tijd gestopt waren met roken bronchiale metingen hadden die dichter bij 
normale waarden kwamen. De bevindingen suggereren dat in personen 
met luchtwegziekten, afwijkende longfunctietest of tekenen van luchtwe-
gziekte op CT, de schadelijke effecten van langdurig roken op de longen 
gedeeltelijk reversibel zijn. Dit biedt vanuit een volksgezondheidsstandpunt 
een extra overtuigend argument voor voortdurende inspanningen om 
mensen te laten stoppen met roken.

In Hoofdstuk 7 onderzochten we de zogenaamde Total Airway Count (TAC), 
het totaal aantal aan gemeten luchtwegtakken op CT. We evalueerden 
de mpact van leeftijd, geslacht, lengte, gewicht en rookgewoonten op 
de variatie van TAC tussen individuen met gezonde longen en degenen 
met verminderde longgezondheid. Bovendien bepaalden we de relatie 
tussen TAC en longfunctietest resultaten. Als laatsteonderzochten we hoe 
goed TAC onderscheid kan maken tussen deelnemergroepen op basis van  
afwijkende longfunctietest resultaten. We vonden significante verschillen in 
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CT-gebaseerde TAC tussen groepen met gezonde longen of ongezonde 
longen binnen de algemene bevolking. Onze analyse toont aan dat TAC 
kansrijk is  als eenvoudiger alternatief voor andere bronchiale parameters 
zoals wandoppervlakte procent en luminale oppervlakte voor het voor-
spellen van afwijkende longfunctie.

In Hoofdstuk 8 zijn de referentiewaarden voor volume van individuele 
longkwabben in de algemene bevolking bepaald . Hierbij wordt rekening 
gehouden met demografische kenmerken zoals leeftijd en geslacht. Deze 
metingen zijn mogelijk bruikbaar voor nauwkeurige planning van gerichte 
behandelingen, zoals longvolume-reductieprocedures in COPD patiënten.

De resultaten van dit proefschrift worden besproken in Hoofdstuk 9 met 
aanvullend een perspectief op de toekomst. De potentiële integratie van 
geavanceerde AI-tools en een verbeterd begrip van de omgevingseffecten 
op de gezondheid van de luchtwegen springen eruit als veelbelovende 
gebieden voor toekomstige studies. 

Concluderend levert dit proefschrift een bijdrage aan de kennis over 
CT-gebaseerde bronchiale parameters in de longgezonde populatie door 
gebruik te maken van geavanceerde beeldanalyse technieken. Door refer-
entiewaarden vast te stellen van bronchiale parameters in een grote en 
gezonde populatie en de impact van levensstijlfactoren zoals rookstop te 
onderzoeken, biedt dit werk waardevolle inzichten in de luchtwegen zoals 
gevisualiseerd op lage-dosis CT en legt het de basis voor toekomstig onder-
zoek van luchtwegen via CT-evaluatie van bronchiale parameters.
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